Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > The Chicken or the Egg?

Growing a good egg: Metadynamics simulations show that the eggshell protein ovocleidin-17 induces the formation of calcite crystals from amorphous calcium carbonate nanoparticles. Multiple spontaneous crystallization and amorphization events were simulated; these simulations suggest a catalytic cycle that explains the role of ovocleidin-17 in the first stages of eggshell formation (the picture shows one intermediate of this cycle). Credit: Angew. Chem. Int. Ed.
Growing a good egg: Metadynamics simulations show that the eggshell protein ovocleidin-17 induces the formation of calcite crystals from amorphous calcium carbonate nanoparticles. Multiple spontaneous crystallization and amorphization events were simulated; these simulations suggest a catalytic cycle that explains the role of ovocleidin-17 in the first stages of eggshell formation (the picture shows one intermediate of this cycle). Credit: Angew. Chem. Int. Ed.

Abstract:
The Numerical Algorithms Group (NAG) provides an essential ingredient to help researchers find the answer.

The Chicken or the Egg?

UK | Posted on December 2nd, 2010

When researchers at the University of Warwick and the University of Sheffield decided to use the UK's national academic supercomputer HECToR to study a problem in egg shell formation, they made use of NAG HPC software engineering expertise (www.nag.com/hpc/index.asp ). The results they obtained may also give a partial answer to the age old question "which came first - the chicken or the egg?"

The answer to the question seems to be ‘chicken' - at least for one particular protein.

Researchers knew that a chicken eggshell protein called ovocledidin-17 (OC-17) must play some role in egg shell formation. The protein is found only in the mineral region of the egg (the hard part of the shell) and laboratory results showed that it appeared to influence the transformation of calcium carbonate into calcite crystals. How this process could be used to form an actual eggshell remained unclear.

University of Warwick researchers Mark Rodger and David Quigley, in collaboration with colleagues at the University of Sheffield, used molecular dynamics simulation and the HECToR supercomputer (a 12,000 core Cray XT4), to solve the problem. The researchers created a model to show how the protein bound to a calcium carbonate surface. However the early performance of the simulation software on HECToR would have kept the validation of this model beyond reach.

Luckily, as well as the Cray supercomputers managed by the University of Edinburgh, the Research Councils' HECToR service includes a comprehensive Computational Science and Engineering (CSE) support service provided by NAG. One of NAG's HPC experts identified input and especially output (I/O) as the bottleneck for the simulation software, known as DL_POLY_3 - originating from Daresbury Laboratories. A solution was provided for this research and NAG has gone on to optimize all the I/O routines, to help other users of DL_POLY_3. This was done by reordering data to take advantage of modern file systems, and then further improved by performing the I/O in parallel. This 6 months of work resulted in the I/O for DL_POLY_3 being, on average, around 50 times faster.

With the performance improvement, use of the specific model to investigate the eggshell formation became tractable. Results of the simulation now show how the protein binds using two clusters of amino acid residues on two loops of the protein. This creates a chemical clamp to nano-sized particles of calcium carbonate which encourages calcite crystallites to form. Once the crystallites are large enough to grow on their own, the protein drops off. This frees up the OC-17 to promote yet more crystallization, facilitating the overnight creation of an eggshell - started, first, by this chicken protein.

Dr David Quigley from the Department of Physics and Centre for Scientific Computing, University of Warwick, said: "Prior to the I/O improvements, DL_POLY_3 was unable to make effective use of the parallel file system on HECToR, severely crippling the performance of our simulations. The new code has reduced the time taken to write a single snapshot from 3 minutes to less than half a second, resulting in an overall factor of 20 improvement in our net performance. Without this development, HECToR would have been effectively useless for our purposes."

The researchers believe that this insight into the elegant and highly efficient methods of promoting and controlling crystallization in nature will be of great benefit to anyone exploring how to promote and control artificial forms of crystallization.

For more details of the research please refer to: Freeman et al, "Structural Control of Crystal Nuclei by an Eggshell Protein" Angew. Chem. Int. Ed. 49 (30) pp 5135-5137 (2010)

####

About Numerical Algorithms Group
With origins in several UK universities, the Numerical Algorithms Group (NAG) has its headquarters in Oxford, and is a not-for-profit organization that collaborates with world-leading researchers and practitioners in academia and industry. NAG serves its customers from offices in Oxford, Manchester, Chicago, Tokyo and Taipei, through field sales staff in France and Germany, as well as via a global network of distributors. NAG provides high-quality computational software and high performance computing services to tens of thousands of users, from Global 500 companies, major learning academies, the world’s leading supercomputing sites, numerous independent software vendors and many others.

For more information, please click here

Contacts:
For editorial inquiries, please contact:
Amy Munice
ALM Communications

+1-773-862-6800
(skype) ALMCommunications

Or

Katie O’Hare
NAG Marketing Communications Manager

+44 (0)1865 511245

Or

Hiro Chiba
Chief Operating Officer – Nihon NAG

+81 3 5542 6311

Or

Edward Chou
NAG Greater China General Manager

Tel: +886-2-25093288

Or

NAG, Booth 3131, SC10
Ernest N. Moriale Convention Center
New Orleans

Copyright © Numerical Algorithms Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Software

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

New computer program aims to teach itself everything about anything June 12th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE