Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab Scientists Receive Time on Nationís Fastest Computer to Advance Research in Cleaner, Renewable Energy Technologies

Simulation of a lean hydrogen-air mixture burning in a low-swirl injector. The colors indicate the presence of nitric oxide emissions near the highly wrinkled flame, while the gray structures at the flame base show the turbulent vorticity generated near the breakdown of the swirling flow from the injector.
Simulation of a lean hydrogen-air mixture burning in a low-swirl injector. The colors indicate the presence of nitric oxide emissions near the highly wrinkled flame, while the gray structures at the flame base show the turbulent vorticity generated near the breakdown of the swirling flow from the injector.

Abstract:
Scientists at the Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have been awarded massive allocations on the nation's most powerful supercomputer to advance innovative research in improving the combustion of hydrogen fuels and increasing the efficiency of nanoscale solar cells.

Berkeley Lab Scientists Receive Time on Nationís Fastest Computer to Advance Research in Cleaner, Renewable Energy Technologies

Berkeley, CA | Posted on December 1st, 2010

The awards were announced today (Tuesday, Nov. 30) by Energy Secretary Steven Chu as part of DOE's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

The INCITE program selected 57 research projects that will use supercomputers at Argonne and Oak Ridge national laboratories to create detailed scientific simulations to perform virtual experiments that in most cases would be impossible or impractical in the natural world. The program allocated 1.7 billion processor-hours to the selected projects. Processor-hours refer to how time is allocated on a supercomputer. Running a 10-million-hour project on a laptop computer with a quad-core processor would take more than 285 years.

"The Department of Energy's supercomputers provide an enormous competitive advantage for the United States," said Secretary Chu. "This is a great example of how investments in innovation can help lead the way to new industries, new jobs, and new opportunities for America to succeed in the global marketplace."

Reducing Dependence on Fossil Fuels

One strategy for reducing U.S. dependence on petroleum is to develop new fuel-flexible combustion technologies for burning hydrogen or hydrogen-rich fuels obtained from a gasification process. John Bell and Marcus Day of Berkeley Lab's Center for Computational Sciences and Engineering, were awarded 40 million hours on the Cray supercomputer "Jaguar" at the Oak Ridge Leadership Computing Facility (OLCF) for "Simulation of Turbulent Lean Hydrogen Flames in High Pressure" to investigate the combustion chemistry of such fuels.

Hydrogen is a clean fuel that, when consumed, emits only water and oxygen making it a potentially promising part of our clean energy future. Researchers will use the Jaguar supercomputer to better understand how hydrogen and hydrogen compounds could be used as a practical fuel for transportation and power generation.

Nanomaterials Have Big Solar Energy Potential

Nanostructures, tiny materials 100,000 times finer than a human hair, may hold the key to improving the efficiency of solar cells - if scientists can gain a fundamental understanding of nanostructure behaviors and properties. To better understand and demonstrate the potential of nanostructures, Lin-Wang Wang of Berkeley Lab's Materials Sciences Division was awarded 10 million hours on the Cray supercomputer at OLCF. Wang's project is "Electronic Structure Calculations for Nanostructures."

Currently, nanoscale solar cells made of inorganic systems suffer from low efficiency, in the range of 1-3 percent. In order for the nanoscale solar cells to have an impact in the energy market, their efficiencies must be improved to more than 10 percent. The goal of Wang's project is to understand the mechanisms of the critical steps inside a nanoscale solar cell, from how solar energy is absorbed, then converted into usable electricity. Although many of the processes are known, some of the corresponding critical aspects of the nano systems are still not well understood.

Because Wang studies systems with 10,000 atoms or more, he relies on large-scale allocations such as his INCITE award to advance his research. To make the most effective use of his allocations, Wang and collaborators developed the Linearly Scaling Three Dimensional Fragment (LS3DF) method. This allows Wang to study systems that would otherwise take over 1,000 times longer on even the biggest supercomputers using conventional simulation techniques. LS3DF won an ACM Gordon Bell Prize in 2008 for algorithm innovation.

Advancing Supernova Simulations

Berkeley Lab's John Bell is also a co-investigator on another INCITE project, "Petascale Simulations of Type Ia Supernovae from Ignition to Observables." The project, led by Stan Woosley of the University of California-Santa Cruz, uses two supercomputing applications developed by Bell's team - MAESTRO, to model the convective processes inside certain stars in the hours leading up to ignition - and CASTRO to model the massive explosions known as Type Ia supernovas. The project received 50 million hours on the Cray supercomputer at OLCF.

Type Ia supernovae (SN Ia) are the largest thermonuclear explosions in the modern universe. Because of their brilliance and nearly constant luminosity at peak, they are also a "standard candle" favored by cosmologists to measure the rate of cosmic expansion. Yet, after 50 years of study, no one really understands how SN Ia work. This project aims to use these applications to model the beginning-to-end processes of these exploding stars.

Read more about the INCITE program, here www.energy.gov/news/9834.htm

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at www.lbl.gov.

For more information, please click here

Contacts:
Jon Bashor
510-486-5849

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Possible Futures

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Announcements

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Environment

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Energy

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project