Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bruker Introduces High Resolution Nanoelectrical and Electrochemical AFM Technology

Abstract:
Continuing the PeakForce Tapping Revolution in AFM

Bruker Introduces High Resolution Nanoelectrical and Electrochemical AFM Technology

Boston, MA | Posted on November 30th, 2010

Bruker Corporation (BRKR 15.51, -0.11, -0.70%) announced today at the Materials Research Society (MRS) Fall 2010 Meeting the release of a new generation of Atomic Force Microscopy (AFM) modes and measurement modules that transform Bruker's AFM systems into turnkey solutions for nanoscale characterization in renewable energy research. The most significant of these new AFM accessories, the PeakForce TUNA(TM) module, enables very high resolution nanoelectrical characterization on fragile samples, including organic photovoltaics, lithium ion battery composites, and carbon nanotube-based device structures. Complementing this capability, Bruker's new offering for electrochemistry research provides wide solvent compatibility, ppm-level environmental control, and easy in-situ liquid scanning on an AFM.

"We are excited to offer ground-breaking new capabilities to scientists in growing areas of nanoelectrical characterization in materials research," said Dr. Mark R. Munch, President of the Bruker Nano Surfaces Business. "This new product release represents a significant advance in our continued drive to expand AFM technologies to energy markets by addressing customer needs for quantitative nanoscale characterization. We are gratified that these modules are among our first new product releases as part of Bruker. Building on our leadership position, they are a fitting continuation of the rapid stream of innovative new products that we have delivered over the past three years."

Mr. David Rossi, Vice President and General Manager of Bruker's AFM Unit, added: "Our new suite of nanoelectrical and electrochemical products are part of our development team's long heritage of AFM innovations in nanoscale research and they build on the foundation of PeakForce Tapping(TM) and ScanAsyst(TM) modes. We see unmet need for non-destructive and artifact-free nanoelectrical and electrochemical characterization in the growing arena of future energy generation and storage materials, and we are partnering with leading researchers and companies in those fields to deliver innovative products to enable their success."

About Bruker's Nanoelectrical and Electrochemical Modules

The new modules expand the Bruker solution suite for nanoscale electrical and electrochemical characterization on samples requiring sensitive mechanical and environmental control. The PeakForce TUNA module utilizes a new current amplifier in conjunction with PeakForce Tapping to allow, for the first time, conductivity mapping on fragile samples such as organic photovoltaics, lithium ion cathodes, and carbon nanotube assemblies without the deleterious effects caused by sample damage and tip contamination. In addition, it enables direct correlation of nanoelectrical and nanomechanical maps with Bruker's exclusive PeakForce QNM(TM) imaging mode. The PeakForce TUNA module is complemented by a new environmental control solution affording ppm-level control of oxygen and water for the most sensitive samples. A new electrochemical AFM cell has been designed to be compatible for a wide range of solvents, including those commonly used for Lithium battery research. For more information on PeakForce TUNA and the other new AFM accessory modules, or to schedule a demo, please call +1 (805) 967-1400, email or visit www.bruker-axs.com.

####

About Bruker
Bruker Corporation is a leading provider of high-performance scientific instruments and solutions for molecular and materials research, as well as for industrial and applied analysis.

For more information, please click here

Contacts:
Bruker Nano Surfaces Business
Stephen Hopkins
+1-520-741-1044 x1022
Marketing Communications

Copyright © Bruker

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Events/Classes

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Thermo Fisher Scientific Showcases Innovations in Electron Microscopy and Spectroscopy at M&M 2017: New analytical technologies improve workflows for life sciences and materials science researchers August 8th, 2017

Nanometrics Announces Upcoming Investor Events August 3rd, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Solar/Photovoltaic

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project