Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Measuring the temperature of nanoparticles

Abstract:
Scientists at Rensselaer Polytechnic Institute have developed a new technique for probing the temperature rise in the vicinity of RF-actuated nanoparticles using fluorescent quantum dots as temperature sensors.

Measuring the temperature of nanoparticles

Washington, DC | Posted on November 30th, 2010

One of the holy grails of nanotechnology in medicine is to control individual structures and processes inside a cell. Nanoparticles are well suited for this purpose because of their small size; they can also be engineered for specific intracellular tasks. When nanoparticles are excited by radio-frequency (RF) electromagnetic fields, interesting effects may occur. For example, the cell nucleus could get damaged inducing cell death; DNA might melt; or protein aggregates might get dispersed.

Some of these effects may be due to the localized heating produced by each tiny nanoparticle. Yet, such local heating, which could mean a difference of a few degrees Celsius across a few molecules, cannot be explained easily by heat-transfer theories. However, the existence of local heating cannot be dismissed either, because it's difficult to measure the temperature near these tiny heat sources.

Scientists at Rensselaer Polytechnic Institute have developed a new technique for probing the temperature rise in the vicinity of RF-actuated nanoparticles using fluorescent quantum dots as temperature sensors. The results are published in the Journal of Applied Physics.

Amit Gupta and colleagues found that when the nanoparticles were excited by an RF field the measured temperature rise was the same regardless of whether the sensors were simply mixed with the nanoparticles or covalently bonded to them. "This proximity measurement is important because it shows us the limitations of RF heating, at least for the frequencies investigated in this study," says project leader Diana Borca-Tasciuc. "The ability to measure the local temperature advances our understanding of these nanoparticle-mediated processes."

The article, "Local Temperature Measurement in the Vicinity of Electromagnetically Heated Magnetite and Gold Nanoparticles" by Amit Gupta, Ravi Kane and Diana-Andra Borca-Tasciuc appears in the Journal of Applied Physics. See: link.aip.org/link/japiau/v108/i6/p064901/s1

Journalists may request a free PDF of this article by contacting

####

About American Institute of Physics
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

For more information, please click here

Contacts:
Jason Socrates Bardi

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leaderís researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Sensors

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Tools

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Quantum Dots/Rods

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE