Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Put a New Spin on Nanotechnology

Brookhaven National Laboratory's Center for Functional Nanomaterials
Brookhaven National Laboratory's Center for Functional Nanomaterials

Abstract:
An international team of researchers has succeeded in creating artificial spin ice in a state of thermal equilibrium for the first time, allowing them to examine the precise configuration of this important nanomaterial.

Scientists Put a New Spin on Nanotechnology

UK | Posted on November 29th, 2010

Scientists from the University of Leeds, the US Department of Energy's Brookhaven National Laboratory and the UK Science and Technology Facilities Council's Rutherford Appleton Laboratory say the breakthrough will allow them to study in much greater detail a scientific phenomenon known as 'magnetic monopoles,' which are thought to exist in such structures. Their findings are published today in the journal Nature Physics.

Artificial spin ice is built using nanotechnology and is made up of millions of tiny magnets, each thousands of times smaller than a grain of sand. The magnets exist in a lattice in what is known as a 'frustrated' structure. Like water ice, the geometry of the structure means that all of the interactions between the atoms cannot be satisfied at the same time.

"It's like trying to seat alternating male and female diners around a table with an odd number of seats - however much you re-arrange them you will never succeed," said Dr Christopher Marrows from the University of Leeds, co-author of the paper.

In spin ice, magnetic dipoles with a north and south pole are arranged in tetrahedron structures. Each dipole has magnetic moments, similar to the protons on H2O molecules in water ice, which attract and repel each other. Consequently, the dipoles arrange themselves into the lowest possible energy state, which is two poles pointing in and two pointing out.

Dr Marrows said: "Spin ices have created a lot of excitement in recent years as it has been realised that they are a playground for physicists studying magnetic monopole excitations and Dirac string physics in the solid state. However, until now all of the samples of these artificial structures created in the lab have been what we call 'jammed.'

"What we have done is find a way to un-jam spin ice and get it into a well-ordered ground state known as thermal equilibrium. We can then freeze a sample into this state, and use a microscope to see which way all the little magnets are pointing. It's the equivalent of being able take a picture of every atom in a room as it allows us to inspect exactly how the structure is configured."

Jason Morgan, PhD student at the University of Leeds and lead author of the paper, was the first member of the team to observe the sample in equilibrium. He said: "Getting the sample to self-order in such a way has never been achieved experimentally before and for a while had been considered impossible. But when we looked at the sample using magnetic force microscopy and saw this beautiful periodic structure we knew instantly that we had achieved an ordered ground state."

The researchers have also been able to observe individual excitations out of this ground state within their sample, which they say is evidence for monopole dynamics within the lattice.

Magnetic monopoles - magnets with only a single north or south pole - are former hypothetical particles that are now thought to exist in spin ice. There is hope among scientists that understanding these monopoles in more detail could lead to advances in a novel technology field known as 'magnetricity' - a magnetic equivalent to electricity.

Co-author Sean Langridge, a Science and Technology Facilities Council (STFC) Fellow and visiting Professor at the University of Leeds, added: "In the naturally occurring spin-ice systems this ground state is predicted but has not been experimentally observed.

"Now that is has been observed in an artificial system the next step is to observe dynamically the excitations from this ground state. We can only do this by controlling the interactions with state of the art lithographic techniques. This level of control will provide an even greater level of understanding in this fascinating system."

The team created "artificial" spin ice samples at Brookhaven using a state-of-the-art nanotechnology tool called an electron beam writer. A similar £4 million facility is shortly to be opened at the University of Leeds which will be unique to the UK and will allow continued collaboration with the researchers at Brookhaven.

The research was funded by the Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the US Department of Energy's Office of Science.

For more information

The paper, entitled 'Thermal Ground State Ordering and Elementary Excitations in Artificial Magnetic Square Ice' is published online today in the journal Nature Physics, dx.doi.org/10.1038/NPHYS1853.

To request an interview with Dr Chris Marrows, or to request photographs of the spin ice sample, please contact Hannah Isom in the University of Leeds press office on 0113 343 4031 or email

####

For more information, please click here

Contacts:
For more information about Brookhaven’s role in this research, contact:
Karen McNulty Walsh
631 344-8350

Copyright © University of Leeds

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

New 'needle-pulse' beam pattern packs a punch January 30th, 2017

Openings/New facilities/Groundbreaking/Expansion

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project