Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti Creates an HgCdTe Infrared Imaging Array With Record-Breaking Thermal Resolution

Abstract:
CEA-Leti announced today the first infrared imaging array in the 8-10Ám band capable of returning an image with a record-breaking minimum temperature difference, or thermal resolution, of 1 to 2mK at ambient temperature and with traditional image cadences of 25-50 Hertz.

CEA-Leti Creates an HgCdTe Infrared Imaging Array With Record-Breaking Thermal Resolution

Grenoble, France | Posted on November 29th, 2010

Leti also created an infrared detection array by linking an innovative reading circuit, manufactured using CMOS-silicon technology, to an array of HgCdTe infrared detectors.

Designed for defense and security applications, the HgCdTe array has a format of 320x256 and a pitch of 25Ám. The array achieved ultimate sensitivity of close to one-thousandth of a degree Kelvin at an operating temperature of 77K. It represents 10-20x increase in sensitivity compared with what is normally possible under the same observation conditions with conventional components.

To obtain this extremely high sensitivity, CEA-Leti designed and produced a special silicon reading circuit with a 0.18Ám CMOS die, involving an analog-to-digital conversion at each elementary detection point with a pitch of 25Ám.

The analogue-to-digital conversion is based on the counting of charge packets given off by the detector. An equivalent stored charge of 3 giga-electrons can be obtained. This reading circuit, which is noise-optimised, thus makes it possible to achieve a level of sensitivity never before obtained on a component of this class.

CEA-Leti presented these results at the international Defense, Security and Sensing conference Orlando, Fla., US, and as part of an invited paper at the international SPIE Defense and Security conference in Toulouse, France, this year.

These results are the fruit of research carried out in a joint Sofradir-CEA (DEFIR) laboratory, with support from CEA, Sofradir, DGA and Onera. Sofradir is producing the HgCdTe infrared detector technology developed by CEA-Leti under exclusive license from CEA.

####

About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m▓ state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families.

For more information, please click here

Contacts:
CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency for CEA-Leti
AmÚlie Ravier
+33 1 58 18 59 30


Agency for Sofradir
Carol Leslie
+33 9 52 20 16 16

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tools

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Homeland Security

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Military

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project