Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Technology uses auto exhaust heat to create electricity, boost mileage

Purdue mechanical engineering doctoral student Yaguo Wang works with a high-speed laser at the Birck Nanotechnology Center to study thermoelectric generators. The devices harvest heat from an engine's exhaust to generate electricity, which could reduce a car's fuel consumption. (Purdue University photo/Mark Simons)
Purdue mechanical engineering doctoral student Yaguo Wang works with a high-speed laser at the Birck Nanotechnology Center to study thermoelectric generators. The devices harvest heat from an engine's exhaust to generate electricity, which could reduce a car's fuel consumption. (Purdue University photo/Mark Simons)

Abstract:
Researchers are creating a system that harvests heat from an engine's exhaust to generate electricity, reducing a car's fuel consumption.

Technology uses auto exhaust heat to create electricity, boost mileage

West Lafayette, IN | Posted on November 24th, 2010

The effort is funded with a $1.4 million, three-year grant from the National Science Foundation and the U.S. Department of Energy. A Purdue University team is collaborating with General Motors, which is developing a prototype using thermoelectric generators, or TEGs, said Xianfan Xu, a Purdue professor of mechanical engineering and electrical and computer engineering.

TEGs generate an electric current to charge batteries and power a car's electrical systems, reducing the engine's workload and improving fuel economy.

The prototype, to be installed in the exhaust system behind the catalytic converter, will harvest heat from gases that are about 700 degrees Celsius, or nearly 1,300 degrees Fahrenheit, Xu said.

Current thermoelectric technology cannot withstand the temperatures inside catalytic converters, where gases are about 1,000 degrees Celsius, he said. However, researchers also are working on new thermoelectrics capable of withstanding such high temperatures, a step that would enable greater fuel savings.

The project begins January 1. The first prototype aims to reduce fuel consumption by 5 percent, and future systems capable of working at higher temperatures could make possible a 10 percent reduction, said Xu, whose work is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

The research team, led by Xu, involves Purdue faculty members Timothy Fisher, a professor of mechanical engineering; Stephen Heister, a professor of aeronautics and astronautics; Timothy Sands, the Basil S. Turner Professor of Engineering, a professor of materials engineering and electrical and computer engineering, and executive vice president for academic affairs and provost; and Yue Wu, an assistant professor of chemical engineering.

The thermoelectric material is contained in chips a few inches square that will be tailored for their specific location within the system.

"They are optimized to work best at different temperatures, which decrease as gas flows along the system," Xu said.

The researchers are tackling problems associated with the need to improve efficiency and reliability, to integrate a complex mix of materials that might expand differently when heated, and to extract as much heat as possible from the exhaust gases.

Thermoelectric materials generate electricity when there is a temperature difference.

"The material is hot on the side facing the exhaust gases and cool on the other side, and this difference must be maintained to continually generate a current," said Xu, who has been collaborating with GM in thermoelectric research for about a decade.

A critical research goal is to develop materials that are poor heat conductors.

"You don't want heat to transfer rapidly from the hot side to the cool side of the chip," Xu said. "You want to maintain the temperature difference to continuously generate current."

Researchers at GM are using a thermoelectric material called skutterudite, a mineral made of cobalt, arsenide, nickel or iron.

"The biggest challenge is system-level design - how to optimize everything to get as much heat as possible from the exhaust gas," Xu said. "The engine exhaust has to lose as much heat as possible to the material."

Rare-earth elements, such as lanthanum, cesium, neodymium and erbium, reduce the thermal conductivity of skutterudite. The elements are mixed with skutterudite inside a furnace. Because using pure rare-earth elements is costly, researchers also are working to replace them with alloys called "mischmetals."

The work builds on previous research at Purdue involving the National Science Foundation, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research and the Rolls-Royce University Technology Center.

Findings, as well as teaching- and research-oriented materials from the project will be provided via websites including Purdue's nanoHUB and thermalHUB Web portals. The research will provide graduate and undergraduate students with training in interdisciplinary areas and industrial experience through internships.

Thermoelectric technologies also might be used in other applications such as harnessing waste heat to generate electricity in homes and power plants and for a new type of solar cell and solid-state refrigerator, Xu said.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Source:
Xianfan Xu
765-494-5639

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Chemistry

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Possible Futures

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Environment

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Energy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Automotive/Transportation

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

Solar/Photovoltaic

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project