Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > World first to provide building blocks for new nano devices

Abstract:
Scientists at The University of Nottingham have made a major breakthrough that could help shape the future of nanotechnology, by demonstrating for the first time that 3-D molecular structures can be built on a surface.

World first to provide building blocks for new nano devices

UK | Posted on November 24th, 2010

The discovery could prove a significant step forward towards the development of new nano devices such as cutting-edge optical and electronic technologies and even molecular computers.

In a paper published in the prestigious journal Nature Chemistry, the team of chemists and physicists at Nottingham have shown that by introducing a ‘guest' molecule they can build molecules upwards from a surface rather than just 2-D formations previously achieved.

A natural biological process known as ‘self-assembly' meant that once the scientists introduced other molecules on to a surface their host then spontaneously arranged them into a rational 3-D structure.

Professor Neil Champness said: "It is the molecular equivalent of throwing a pile of bricks up into the air and then as they come down again they spontaneously build a house.

"Until now this has only been achievable in 2-D, so to continue the analogy the molecular ‘bricks' would only form a path or a patio but our breakthrough now means that we can start to build in the third dimension. It's a significant step forward to nanotechnology."

Previously, scientists have employed a technique found in nature of using hydrogen bonds to hold DNA together to build two-dimensional molecular structure.

The new process involved introducing a guest molecule — in this case a ‘buckyball' or C60 — on to a surface patterned by an array of tetracarboxylic acid molecules. The spherical shape of the buckyballs means they sit above the surface of the molecule and encourage other molecules to form around them. It offers scientists a completely new and controlled way of building up additional layers on the surface of the molecule.

The work is the culmination of four years' of research led by Professors Champness and Beton from the School of Chemistry and the School of Physics and Astronomy, which has been funded with a total of £3.5 million from the Engineering and Physical Sciences Research Council.

The research paper is the second significant breakthrough to be reported by the team in recent weeks. In September, a paper in Nature Communications revealed they had demonstrated for the first time the way in which an irregularly shaped molecule is adsorbed on a surface. It represents a step towards being able to harness the potential of these molecules, which have extremely useful properties, by organising them to form structures. They could offer a way of building new data storage devices that are orders of magnitude smaller than their existing silicon-based counterparts.

####

About University of Nottingham
The University of Nottingham, described by The Times as “the nearest Britain has to a truly global university”, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings.

The University is committed to providing a truly international education for its 39,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power.

The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

For more information, please click here

Contacts:
Professor Neil Champness on +44 (0)115 951 3505,
Emma Thorne - Media Relations Manager
Email:

Phone: +44 (0)115 951 5793

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Possible Futures

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Molecular Machines

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Revealing the fluctuations of flexible DNA in 3-D: First-of-their-kind images by Berkeley Lab-led research team could aid in use of DNA to build nanoscale devices March 31st, 2016

Self Assembly

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Researchers develop new semiconducting polymer for forthcoming flexible electronics April 21st, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Photonics/Optics/Lasers

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic