Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > All Sprayed at Once

Technicolor dreamcoat: Spray-on nanoscale coatings are formed by simultaneous spraying of complementary species (e.g., polyanion/polycation, polyelectrolyte/small oligomeric ion, two inorganic salt solutions) against a receiving surface (see picture). The process leads to the formation of ultrathin films, the thicknesses of which are controlled by the spraying time. This general one-step coating method results in optically homogeneous films from a broad choice of functional compounds.
Technicolor dreamcoat: Spray-on nanoscale coatings are formed by simultaneous spraying of complementary species (e.g., polyanion/polycation, polyelectrolyte/small oligomeric ion, two inorganic salt solutions) against a receiving surface (see picture). The process leads to the formation of ultrathin films, the thicknesses of which are controlled by the spraying time. This general one-step coating method results in optically homogeneous films from a broad choice of functional compounds.

Abstract:
Ultrathin coatings made through simultaneous spraying of interacting substances

All Sprayed at Once

Weinheim, Germany | Posted on November 24th, 2010

Coatings functionalize surfaces or protect them from processes such as corrosion, abrasion, and weathering, and may provide an aesthetic appearance—automotive coatings and non-stick frying pans are good examples. Contact lenses, implants, LEDs, or photovoltaic cells require extremely thin coatings. In the journal Angewandte Chemie, the teams led by Gero Decher at the Institut Charles Sadron in Strasbourg (France) have now introduced a new process for the production of ultrathin coatings that is especially simple, versatile, and suitable for large-scale processes.

A simple yet powerful method for the assembly of nanoscale films is the already well-known layer-by-layer technique. Two mutually interacting species, for example positively and negatively charged polymers, are consecutively adsorbed from solution, forming hybrid thin films through a self-organization process. One major improvement to this method was introduced with the technique of spray-assisted deposition, in which atomized mists of solutions containing each of the two substances are sprayed on a surface in an alternating fashion. This accelerates the process and facilitates scaling up to industrial levels.

The French-German researchers led by Decher and Pierre Schaaf at the Centre National de la Recherche Scientifique and Jean-Claude Voegel at the Institut National de la Santé et de la Recherche Médicale have now been able to make another substantial improvement to this technique: In "simultaneous spray coating of interacting species" (SSCIS), the two complementary components are not applied consecutively, but are simultaneously sprayed against a receiving surface. Depending on the process conditions, the partner substances rapidly form a continuous layer. The thickness of the film is controlled by changing the spraying time and can range from a few nanometers to a few micrometers. This results in highly homogenous coatings that can even possess optical quality.

The one-step process is cheap, robust, user-friendly, and unbelievably versatile. In principle, all pairs of substances that interact with each other, such as inorganic ions of opposite charge, are suitable for use with the simultaneous spray process. It is thus possible to produce films of calcium fluoride (for optical components) or deposits of calcium phosphate (for use in biomaterials).

Interestingly, the new technique also works with pairs that do not produce intact layers when the conventional layer-by-layer process is used. Thus the presented results open up a wealth of new possibilities to produce surfaces with tailored specific functionalities, for example for catalysis, to make implants more biocompatible or for tissue engineering.

Author: Gero Decher, Institut Charles Sadron, Strasbourg (France), www-ics.u-strasbg.fr/spip.php?article185

Title: Spray-On Organic/Inorganic Films: A General Method for the Formation of Ultrathin Coatings

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201002729

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Display technology/LEDs/SS Lighting/OLEDs

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

Thin films

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Products

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

CAP-XX Launches 0.6mm Thinline Supercapacitors for Designing Wearable, Ultra-Portable and Connected IoT Devices: Eliminated Materials and Changed Processes to Reduce Thickness and Costs to Below $1 May 19th, 2015

Iran Unveils 6 Knowledge-Based Products April 11th, 2015

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Industrial

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Nano-policing pollution May 13th, 2015

ORNL superhydrophobic glass coating offers clear benefits May 11th, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project