Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Supercomputers ensure plastics peg out later

The research team used supercomputers to understand the breakdown of plastics.
The research team used supercomputers to understand the breakdown of plastics.

Abstract:
Scientists from The Australian National University have used supercomputers to reveal how plastic items like the humble clothes peg can be designed to withstand the sun for longer.

Supercomputers ensure plastics peg out later

Canberra | Posted on November 23rd, 2010

The researchers, led by Associate Professor Michelle Coote and PhD student Ms Anya Gryn'ova from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology at ANU, have used sophisticated quantum chemistry and supercomputers to model polymer degradation and discovered how to make better, more robust plastics. Their work will be published in an upcoming special edition of The Royal Society Chemistry journal, Organic & Biomolecular Chemistry.

"Although plastics have been manufactured for a long time, in this study we have uncovered critical information about creating longer lasting plastics which is important if we want to reduce the amount of plastic waste entering landfill every year," said Associate Professor Coote.

Historically scientists have thought that clothes pegs and other plastics left out in the sun become brittle and fail due to a process called autoxidation. Exposure to light or heat generates free radicals, which are reactive species that attack the polymeric chains in the plastic causing them to rearrange and break. Crucially, each ‘broken' polymer chain is then thought to attack the next polymer chain, leading to a cascading failure that results in visible damage to the plastic.

However, the research led by Associate Professor Coote suggests that most types of plastics should actually be inherently resistant to this process and the reason damage occurs at all is because most polymer chains contain a small number of defect structures, formed during their manufacture.

"The good news is that if you can remove these defect structures you could greatly improve the stability of many plastics," said Ms Anya Gryn'ova.

The findings of this research have led to a number of recommendations to prolong the shelf-life of plastics, including using improved manufacturing reaction conditions and choosing more resistant polymers for long term plastic design. Conversely, the information gained in this study will also assist in creating improved biodegradable plastics.

"Our research has shed considerable light on the process of how plastics degrade and should mean that brittle clothes pegs falling off the line are a thing of the past," said Associate Professor Coote.

####

For more information, please click here

Contacts:
Assoc Professor Michelle Coote
02 6125 3771

Copyright © Australian National University in Canberra

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Possible Futures

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Materials/Metamaterials

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE