Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Supercomputers ensure plastics peg out later

The research team used supercomputers to understand the breakdown of plastics.
The research team used supercomputers to understand the breakdown of plastics.

Abstract:
Scientists from The Australian National University have used supercomputers to reveal how plastic items like the humble clothes peg can be designed to withstand the sun for longer.

Supercomputers ensure plastics peg out later

Canberra | Posted on November 23rd, 2010

The researchers, led by Associate Professor Michelle Coote and PhD student Ms Anya Gryn'ova from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology at ANU, have used sophisticated quantum chemistry and supercomputers to model polymer degradation and discovered how to make better, more robust plastics. Their work will be published in an upcoming special edition of The Royal Society Chemistry journal, Organic & Biomolecular Chemistry.

"Although plastics have been manufactured for a long time, in this study we have uncovered critical information about creating longer lasting plastics which is important if we want to reduce the amount of plastic waste entering landfill every year," said Associate Professor Coote.

Historically scientists have thought that clothes pegs and other plastics left out in the sun become brittle and fail due to a process called autoxidation. Exposure to light or heat generates free radicals, which are reactive species that attack the polymeric chains in the plastic causing them to rearrange and break. Crucially, each ‘broken' polymer chain is then thought to attack the next polymer chain, leading to a cascading failure that results in visible damage to the plastic.

However, the research led by Associate Professor Coote suggests that most types of plastics should actually be inherently resistant to this process and the reason damage occurs at all is because most polymer chains contain a small number of defect structures, formed during their manufacture.

"The good news is that if you can remove these defect structures you could greatly improve the stability of many plastics," said Ms Anya Gryn'ova.

The findings of this research have led to a number of recommendations to prolong the shelf-life of plastics, including using improved manufacturing reaction conditions and choosing more resistant polymers for long term plastic design. Conversely, the information gained in this study will also assist in creating improved biodegradable plastics.

"Our research has shed considerable light on the process of how plastics degrade and should mean that brittle clothes pegs falling off the line are a thing of the past," said Associate Professor Coote.

####

For more information, please click here

Contacts:
Assoc Professor Michelle Coote
02 6125 3771

Copyright © Australian National University in Canberra

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Materials/Metamaterials

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE