Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Supercomputers ensure plastics peg out later

The research team used supercomputers to understand the breakdown of plastics.
The research team used supercomputers to understand the breakdown of plastics.

Abstract:
Scientists from The Australian National University have used supercomputers to reveal how plastic items like the humble clothes peg can be designed to withstand the sun for longer.

Supercomputers ensure plastics peg out later

Canberra | Posted on November 23rd, 2010

The researchers, led by Associate Professor Michelle Coote and PhD student Ms Anya Gryn'ova from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology at ANU, have used sophisticated quantum chemistry and supercomputers to model polymer degradation and discovered how to make better, more robust plastics. Their work will be published in an upcoming special edition of The Royal Society Chemistry journal, Organic & Biomolecular Chemistry.

"Although plastics have been manufactured for a long time, in this study we have uncovered critical information about creating longer lasting plastics which is important if we want to reduce the amount of plastic waste entering landfill every year," said Associate Professor Coote.

Historically scientists have thought that clothes pegs and other plastics left out in the sun become brittle and fail due to a process called autoxidation. Exposure to light or heat generates free radicals, which are reactive species that attack the polymeric chains in the plastic causing them to rearrange and break. Crucially, each ‘broken' polymer chain is then thought to attack the next polymer chain, leading to a cascading failure that results in visible damage to the plastic.

However, the research led by Associate Professor Coote suggests that most types of plastics should actually be inherently resistant to this process and the reason damage occurs at all is because most polymer chains contain a small number of defect structures, formed during their manufacture.

"The good news is that if you can remove these defect structures you could greatly improve the stability of many plastics," said Ms Anya Gryn'ova.

The findings of this research have led to a number of recommendations to prolong the shelf-life of plastics, including using improved manufacturing reaction conditions and choosing more resistant polymers for long term plastic design. Conversely, the information gained in this study will also assist in creating improved biodegradable plastics.

"Our research has shed considerable light on the process of how plastics degrade and should mean that brittle clothes pegs falling off the line are a thing of the past," said Associate Professor Coote.

####

For more information, please click here

Contacts:
Assoc Professor Michelle Coote
02 6125 3771

Copyright © Australian National University in Canberra

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE