Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iran's Nano Scientists Improve Fricative Properties of Aluminum Alloys

Abstract:
Iranian researchers at Isfahan University of Technology improved the fricative properties of mostly-used aluminum alloys through a novel method by using nanocomposites.

Iran's Nano Scientists Improve Fricative Properties of Aluminum Alloys

Iran | Posted on November 23rd, 2010

"Al2024 alloy is known as one of the most used aluminum alloys, especially in aerospace industry. However, it does not have desirable fricative properties just like other aluminum alloys. We improved the properties of the alloy by creating a nanocomposite layer on its surface," Babak Zahmatkesh, one of the researchers, told the news service of Iran Nanotechnology Initiative Council's website.

After preliminary studies, the researchers designed an appropriate tool for the friction stir process and optimized the parameters of the process. Then, they produced Al-10% Al2O3 nanocomposite powder through mechanical alloying and applied the powder on the surface of the base metal during a plasma heat spraying process.

The combination of plasma heat spraying process and friction stir process used in this research solves the problems in the previous methods during the coating with strengthening particles.

In the previous methods, there were observed various problems such as severe aggregation, impossibility of the extension of the strengthened zone on the plate surface, non-homogeneity in the thickness of the strengthening layer, formation of pores and limitations in the thickness of the strengthened layer.

"The results show that the strengthening particles have diffused homogeneously into the sub-layer and the average thickness of the nanocomposite layer is 600 micrometers," Eng Zahmatkesh said about the results obtained in the research.

"In addition, the nanocomposite sample has a higher resistance against friction in comparison with the base metal to the extent that the amounts of weight reduction at the end of the friction experiment (1000 m) were 37.7 mg for the base metal and only 4 mg for the nanocomposite sample. The results of micro-resistance test show a noticeable increase in the hardness of nanocomposite compared to that of the base metal," he added.

####

For more information, please click here

Copyright © FARS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Materials/Metamaterials

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Aerospace/Space

National Space Society and Cornell University's Cislunar Explorers Celebrate The Team's First Place Victory in NASA's Cube Quest Challenge June 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project