Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Digital Agenda: Commission-funded research brings invisibility one step closer

Abstract:
Harry Potter's 'invisibility cloak' has moved a step closer to reality thanks to European Commission funded nanotechnology research. Scientists from Germany, Greece, Turkey and the UK have succeeded in tailoring the flow of light using nanotechnology, opening the way not only to potential applications in lenses and optical circuitry but also to exotic three dimensional devices such as 'invisibility cloaks'. Although currently limited to cloaking objects of sub-millimetre size, the project has delivered a key proof-of-principle for engineering optical properties of materials in ways believed impossible until now. The project is part of the Commission's initiative to boost high-risk ICT research in future and emerging information technologies, an objective of the Digital Agenda for Europe (see IP/10/581, MEMO/10/199 and MEMO/10/200).

Digital Agenda: Commission-funded research brings invisibility one step closer

Brussels | Posted on November 23rd, 2010

Neelie Kroes, Vice President of the European Commission for the Digital Agenda, said: "I am amazed by the ingenuity of European researchers. This project has achieved in real life what we knew only from special effects in the cinema. Such cutting edge research is crucial to laying the foundations for new technologies essential for Europe's competitiveness."

Scientists in the PHOME project designed and created "photonic meta-materials" which influence the behaviour of light rays. The breakthrough is based on the principle of transformation optics which was pioneered by the team behind the project.

The "invisibility cloak" itself is made up of very small rods just a few hundred nanometres across that are arranged into a structure resembling a woodpile. The rods are carefully arranged so that they are able to partially bend light waves.

By changing the speed and direction in which light travels, the scientists can guide light waves around a micrometer-sized bump in such a way as to render it invisible in three dimensions, and at wavelengths of light close to those visible to humans. Work is underway to extend the effect into the visible range and the results are expected in January.

Until now, such "invisibility cloaks" have only worked in two dimensions. This meant that the concealed object was invisible when the observer attempted to look at it head on, but became visible when viewed from the side. This study is the first to result in the creation of a device that renders an object invisible in all three dimensions.

Future applications of this research could lie in the development of entirely new optical components, such as perfect lenses, light storage devices, and important components for lasers and optoelectronics such as modulators and isolators. While full-body invisibility cloaks remain beyond the reach of current science and technology, this research has proved an important principle that was until recently believed to be impossible.

Background

Research work on the PHOME project started in April 2008 and will end in 2011. The total cost of the project is 1.88 million of which the Commission contributes 1.43 million under the ICT research budget of the R&D Seventh Framework Programme 2007-2013.

The success of the future and emerging information technologies (FET-Open) programme in developing cutting-edge European research has led the Commission to propose doubling the funding available for FET research by 2015 (MEMO/10/140 and IP/09/608).

FET-Open is continuously open to conceptually new, high-potential research proposals with a long-term vision. Researchers from three European academic institutions, the Foundation for Research & Technology, Greece; the Karlsruhe Institute of Technology, Germany; and Imperial College London, UK work for the PHOME projects. Bilkent University in Turkey is a partner in the project thanks to its research association agreement with the EU.

Read more about the project: esperia.iesl.forth.gr/~ppm/PHOME/

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultrathin device harvests electricity from human motion July 23rd, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Possible Futures

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Photonics/Optics/Lasers

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project