Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Digital Agenda: Commission-funded research brings invisibility one step closer

Abstract:
Harry Potter's 'invisibility cloak' has moved a step closer to reality thanks to European Commission funded nanotechnology research. Scientists from Germany, Greece, Turkey and the UK have succeeded in tailoring the flow of light using nanotechnology, opening the way not only to potential applications in lenses and optical circuitry but also to exotic three dimensional devices such as 'invisibility cloaks'. Although currently limited to cloaking objects of sub-millimetre size, the project has delivered a key proof-of-principle for engineering optical properties of materials in ways believed impossible until now. The project is part of the Commission's initiative to boost high-risk ICT research in future and emerging information technologies, an objective of the Digital Agenda for Europe (see IP/10/581, MEMO/10/199 and MEMO/10/200).

Digital Agenda: Commission-funded research brings invisibility one step closer

Brussels | Posted on November 23rd, 2010

Neelie Kroes, Vice President of the European Commission for the Digital Agenda, said: "I am amazed by the ingenuity of European researchers. This project has achieved in real life what we knew only from special effects in the cinema. Such cutting edge research is crucial to laying the foundations for new technologies essential for Europe's competitiveness."

Scientists in the PHOME project designed and created "photonic meta-materials" which influence the behaviour of light rays. The breakthrough is based on the principle of transformation optics which was pioneered by the team behind the project.

The "invisibility cloak" itself is made up of very small rods just a few hundred nanometres across that are arranged into a structure resembling a woodpile. The rods are carefully arranged so that they are able to partially bend light waves.

By changing the speed and direction in which light travels, the scientists can guide light waves around a micrometer-sized bump in such a way as to render it invisible in three dimensions, and at wavelengths of light close to those visible to humans. Work is underway to extend the effect into the visible range and the results are expected in January.

Until now, such "invisibility cloaks" have only worked in two dimensions. This meant that the concealed object was invisible when the observer attempted to look at it head on, but became visible when viewed from the side. This study is the first to result in the creation of a device that renders an object invisible in all three dimensions.

Future applications of this research could lie in the development of entirely new optical components, such as perfect lenses, light storage devices, and important components for lasers and optoelectronics such as modulators and isolators. While full-body invisibility cloaks remain beyond the reach of current science and technology, this research has proved an important principle that was until recently believed to be impossible.

Background

Research work on the PHOME project started in April 2008 and will end in 2011. The total cost of the project is €1.88 million of which the Commission contributes €1.43 million under the ICT research budget of the R&D Seventh Framework Programme 2007-2013.

The success of the future and emerging information technologies (FET-Open) programme in developing cutting-edge European research has led the Commission to propose doubling the funding available for FET research by 2015 (MEMO/10/140 and IP/09/608).

FET-Open is continuously open to conceptually new, high-potential research proposals with a long-term vision. Researchers from three European academic institutions, the Foundation for Research & Technology, Greece; the Karlsruhe Institute of Technology, Germany; and Imperial College London, UK work for the PHOME projects. Bilkent University in Turkey is a partner in the project thanks to its research association agreement with the EU.

Read more about the project: esperia.iesl.forth.gr/~ppm/PHOME/

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Announcements

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Photonics/Optics/Lasers

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project