Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Purdue gets $1.5 million for quantum information center

Sabre Kais
Sabre Kais

Abstract:
Purdue University has been awarded $1.5 million to study quantum information science, a new field paving the way for quantum computing - a novel method to process information that is faster, more powerful and more efficient than classical computing.

By Elizabeth K. Gardner

Purdue gets $1.5 million for quantum information center

West Lafayette, IN | Posted on November 22nd, 2010

Purdue University has been awarded $1.5 million to study quantum information science, a new field paving the way for quantum computing - a novel method to process information that is faster, more powerful and more efficient than classical computing.

The National Science Foundation-funded Center for Quantum Information and Computation for Chemistry will focus on the role of quantum information in chemical systems and on developing algorithms for chemical problems that can be solved efficiently using quantum computers.

Sabre Kais, the project's principal investigator, said quantum information science draws on physical science, mathematics, computer science and engineering to understand how certain fundamental laws of physics can be harnessed to improve the acquisition, transmission and processing of information.

"The center will bring together experts in theoretical chemistry and quantum information processing to investigate information techniques used to gain new insights into a variety of chemical processes from bond breaking to photosynthesis," said Kais, who is a professor of chemistry and a researcher in the Birck Nanotechnology Center. "This work will advance our understanding of chemical phenomena and could lead to the realization of quantum computers, which would be capable of performing complex calculations and simulations impossible on today's computers."

Quantum computing aims to use the behavior of atomic and subatomic particles like electrons, protons and photons to create a new way to store and process information. These particles would be turned into quantum bits, or qubits for computing.

While classical computers use transistors that are either "on" or "off" to represent a 1 or 0, qubits offer a third option of being both 1 and 0 at the same time to exponentially increase the number of calculations a computer can run simultaneously.

These particles also have the ability to be put into a state of entanglement, where a change applied to one is instantly reflected by the others, which offers the potential for massive parallel processing.

In the field of chemistry there are calculations that cannot be done through classical computing because it would take years for the computer to run through and evaluate all of the possibilities, Kais said.

"For example, obtaining the exact electronic structure of complex molecules can require running through more than 100 quadrillion configurations," he said. "This is an impossible task on any current computer. We hope to design a quantum algorithm that can be used on a quantum computer to solve this problem in a matter of minutes."

The center also will develop new software tools for the scientific community and will serve as an educational resource through public lectures, new course development, distance education initiatives and K-12 classroom activities.

Partners in the Purdue-based center include Alan Aspuru-Guzik of Harvard University, Kenneth R. Brown of the Georgia Institute of Technology, Daniel A. Lidar of the University of Southern California and Peter J. Love of Haverford College.

The center is funded by the National Science Foundation Centers for Chemical Innovation Program, which supports research centers that can address major, long-term fundamental chemical research challenges that have a high probability of both producing transformative research and leading to innovations.

####

For more information, please click here

Contacts:
Writer
Elizabeth K. Gardner
765-494-2081


Source
Sabre Kais
765-494-5965

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project