Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Purdue gets $1.5 million for quantum information center

Sabre Kais
Sabre Kais

Abstract:
Purdue University has been awarded $1.5 million to study quantum information science, a new field paving the way for quantum computing - a novel method to process information that is faster, more powerful and more efficient than classical computing.

By Elizabeth K. Gardner

Purdue gets $1.5 million for quantum information center

West Lafayette, IN | Posted on November 22nd, 2010

Purdue University has been awarded $1.5 million to study quantum information science, a new field paving the way for quantum computing - a novel method to process information that is faster, more powerful and more efficient than classical computing.

The National Science Foundation-funded Center for Quantum Information and Computation for Chemistry will focus on the role of quantum information in chemical systems and on developing algorithms for chemical problems that can be solved efficiently using quantum computers.

Sabre Kais, the project's principal investigator, said quantum information science draws on physical science, mathematics, computer science and engineering to understand how certain fundamental laws of physics can be harnessed to improve the acquisition, transmission and processing of information.

"The center will bring together experts in theoretical chemistry and quantum information processing to investigate information techniques used to gain new insights into a variety of chemical processes from bond breaking to photosynthesis," said Kais, who is a professor of chemistry and a researcher in the Birck Nanotechnology Center. "This work will advance our understanding of chemical phenomena and could lead to the realization of quantum computers, which would be capable of performing complex calculations and simulations impossible on today's computers."

Quantum computing aims to use the behavior of atomic and subatomic particles like electrons, protons and photons to create a new way to store and process information. These particles would be turned into quantum bits, or qubits for computing.

While classical computers use transistors that are either "on" or "off" to represent a 1 or 0, qubits offer a third option of being both 1 and 0 at the same time to exponentially increase the number of calculations a computer can run simultaneously.

These particles also have the ability to be put into a state of entanglement, where a change applied to one is instantly reflected by the others, which offers the potential for massive parallel processing.

In the field of chemistry there are calculations that cannot be done through classical computing because it would take years for the computer to run through and evaluate all of the possibilities, Kais said.

"For example, obtaining the exact electronic structure of complex molecules can require running through more than 100 quadrillion configurations," he said. "This is an impossible task on any current computer. We hope to design a quantum algorithm that can be used on a quantum computer to solve this problem in a matter of minutes."

The center also will develop new software tools for the scientific community and will serve as an educational resource through public lectures, new course development, distance education initiatives and K-12 classroom activities.

Partners in the Purdue-based center include Alan Aspuru-Guzik of Harvard University, Kenneth R. Brown of the Georgia Institute of Technology, Daniel A. Lidar of the University of Southern California and Peter J. Love of Haverford College.

The center is funded by the National Science Foundation Centers for Chemical Innovation Program, which supports research centers that can address major, long-term fundamental chemical research challenges that have a high probability of both producing transformative research and leading to innovations.

####

For more information, please click here

Contacts:
Writer
Elizabeth K. Gardner
765-494-2081


Source
Sabre Kais
765-494-5965

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Chemistry

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Quantum Computing

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Announcements

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE