Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Detecting cancer with the prick of a finger

Chemistry professor Adam Woolley created a microchip that could speed up cancer detection.  Photograph by Mark A. Philbrick
Chemistry professor Adam Woolley created a microchip that could speed up cancer detection. Photograph by Mark A. Philbrick

Abstract:
BYU researchers create microdevice to speed up cancer detection

By Todd Hollingshead

Detecting cancer with the prick of a finger

Provo, UT | Posted on November 20th, 2010

Researchers at BYU have created a micro device that could both decrease the amount of blood and time needed to test for cancer-markers in a patient's blood.

Chemistry professor Adam Woolley's research, published in a recent issue of the journal, Lab on a Chip, details the device and technique that would allow for effective detection of biomarkers in a blood sample in a matter of minutes rather than days or weeks.

"You could walk into the doctor's office, the nurse could prick your finger instead of sticking a needle in your vein, and 30 or 40 minutes later, you'd get the results back in the same doctor's office," Woolley said.

Woolley said the current approach for detecting biomarkers, ELISA (enzyme-linked immunosorbent assay), works well as long as you're doing it in high volumes. This is why blood samples are usually sent to a clinical lab where they can run dozens of samples at the same time.

And while ELISA is efficient and cost effective if, say, there are 90 blood samples to process, the BYU micro device would allow a technician to look at just one sample quickly and cost-effectively to determine if there are markers for, say, breast cancer or prostate cancer.

The microchip researched and created by Woolley and doctoral student Weichun Yang could lead to effective testing for cancer-marking proteins with the use of only microliters of blood instead of milliliters - a smaller sample by a factor of a thousand.

"Detecting cancer biomarkers in a point-of-care setting can significantly improve the throughput of cancer screening and diagnose a cancer tumor at its early stage," said Yang, lead author on the paper. "These devices provide a robust, quick, and portable system for early stage disease diagnosis."

Whereas ELISA uses a series of antibodies as hooks to grab targeted proteins and identify them, Woolley's method uses only one antibody step, which is then followed by a step where voltage is applied and the proteins are identified by the speed at which they move.

The new micro device can also detect multiple cancer biomarkers in blood simultaneously. In this particular round of research, Woolley and his team used the chip to detect four biomarkers simultaneously, but the device has the potential to detect upwards of 10 or 20.

Woolley said he and his team are now looking at ways to speed up the biomarker detection process even more. Ideally, he'd like to get the 30- to 40-minute process down to 20, 15 or even 10 minutes.

"If you learn from your doctor that you might have a life-threatening disease and that some initial testing must be performed, you don't want to wait weeks to find out what's going on," Woolley said. "You'd like to know that very day."

Woolley's research was funded by a National Institutes of Health grant awarded in 2006. Other co-authors on the study were post-doctorates Ming Yu and Xiuhua Sun.

####

For more information, please click here

Contacts:
Media Contact
Todd Hollingshead
801-422-8373

Copyright © Brigham Young University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Microfluidics/Nanofluidics

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology July 7th, 2015

Lehigh University researchers unveil engineering innovations at TechConnect 2015: TechConnect is the world's largest accelerator for industry-vetted emerging-technologies ready for commercialization June 11th, 2015

How to cut a vortex into slices: A group of physicists, lead by Olga Vinogradova, professor at the Lomonosov Moscow State University, came up with a way to stir up a liquid in the microchannel June 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Possible Futures

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Nanomedicine

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Announcements

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Nanobiotechnology

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic