Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stevens Institute Doctoral Candidate Publishes on Graphene's Potential with NSF Support

Milan Begliarbekov
Milan Begliarbekov

Abstract:
Since graphene was first isolated in 2004 with the help of Scotch tape, researchers have excitedly turned to the material to discover its potential applications. As researchers across the globe peel away layer after layer of its properties, Milan Begliarbekov, a doctoral candidate at Stevens Institute of Technology, has found some unique applications for this distinctive material.

Stevens Institute Doctoral Candidate Publishes on Graphene's Potential with NSF Support

Hoboken, NJ | Posted on November 20th, 2010

Graphene is charged with possibilities for Milan. With the help of a world-class Stevens faculty, support from the National Science Foundation (NSF) Graduate Teaching Fellows in K-12 Education (GK-12) program through the New Jersey Alliance for Engineering Education (NJAEE), and an award from the Air Force Office of Scientific Research (AFOSR), Milan is conducting groundbreaking research of the material. He has already published two papers on graphene in Applied Physics Letters in pursuit of his Ph.D. and has a third paper in the pipeline. Both published articles have also been selected for the Virtual Journal of Nanoscale Science and Technology.

"Given that the our team just started two years ago to work with graphene in a collaboration with Professor Yang's group from the Mechanical Engineering Department, Milan's research success is quite remarkable," says Dr. Stefan Strauf, Assistant Professor of Physics and Engineering Physics (PEP) and Director of the Nanophotonics lab. "Milan is one of these unique graduate students you would like to clone into a dozen in your lab in order to implement all of his ideas."

His first published article, "Determination of edge purity in bilayer graphene using µ-Raman spectroscopy," confirms a technique for differentiating between monolayer and bilayer graphene, and introduces a new method to quantify the composition of graphenes chiral edges through µ-Raman spectroscopy.

Milan's second article, "Aperiodic conductivity oscillations in quasiballistic graphene heterojunctions," establishes a new signature of Klein tunneling in graphene heterojunctions. The research has applications in nanolectronics such as graphene field effect transistors (GFET), which have been shown to be capable of ultra-high frequency (300 GHz) operation.

Milan's next article, yet to be published, is "Quantum Inductance and High Frequency Oscillators in Graphene Nanoribbons." The paper proposes a novel technique for measuring the speed of ultra-high frequency transistors. Currently it is very difficult to measure ultra-high-frequency signals above 40 GHz by purely electronic means. However, Milan's research indicates that graphene nanoribbons can serve as all-electronic ultra-high frequency oscillators and filters, which would extend the possibilities of high-frequency electronics into new realms.

As he works with a material whose greatest applications may still be unrealized, Milan says he enjoys the level of creativity he is afforded in exploring graphene's possibilities. "I like working with Professor Strauf, because of the freedom he gives me to choose my own research projects," Milan says. "He allows me to explore things I find interesting, rather than asking me to work on a pre-defined research objective."

Working with Stevens faculty Dr. Strauf and Dr. Chris Search, who is also an Assistant Professor of PEP, Milan is determined to convert new ideas into patentable technology. "We are pleased to announce that with the help of the Office of Academic Entrepreneurship, Milan is in the process of applying for a patent with a novel application of graphene that exploits its near-perfect efficiency as a conductor," says Dr. Christos Christodoulatos, Professor and Associate Provost of Academic Entrepreneurship.

In addition to the AFOSR grant, Milan was also supported by the NSF GK-12 program through NJAEE. As an NJAEE fellow from 2008 to 2010, Milan worked alongside teacher mentors in local high school classrooms to expose younger students to cutting edge science and engineering research.

"The NJAEE program provides a unique opportunity for graduate students to enhance their teaching and communication skills, instills in them the spirit of innovation and entrepreneurship, and at the same time provides them a forum to share their passion and enthusiasm for science and engineering with younger students," says Dr. Frank Fisher, Associate Professor of Mechanical Engineering and co-Director of the Stevens Nanotechnology Graduate Program who is a co-PI on the NJAEE project. "Milan was just fantastic as a NJAEE Fellow, and has recently been able to apply these skills as an instructor in the Physics department here at Stevens as well as Queensborough Community College of CUNY."

The patent and papers are the most recent examples of Milan's success at Stevens. As an undergraduate at Stevens, Begliarbekov took advantage of both the Charles V. Schaefer, Jr. School of Engineering and Sciences and what would become the College of Arts and Letters to graduate with two degrees, a B.S. in Physics and a B.A. in Literature. Having taken graduate-level courses in nanotechnology as an undergraduate, "I was already ahead of the curve," he says, when it came to searching for a graduate program.

####

For more information, please click here

Copyright © Stevens Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Quantum nanoscience

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Scientists discover light could exist in a previously unknown form August 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic