Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Caltech Physicists Demonstrate a Four-Fold Quantum Memory

The fluorescence from the four atomic ensembles. These ensembles are the four quantum memories that store an entangled quantum state. Credit: Nature/Caltech/Akihisa Goban
The fluorescence from the four atomic ensembles. These ensembles are the four quantum memories that store an entangled quantum state. Credit: Nature/Caltech/Akihisa Goban

Abstract:
Researchers at the California Institute of Technology (Caltech) have demonstrated quantum entanglement for a quantum state stored in four spatially distinct atomic memories.

By Jon Weiner

Caltech Physicists Demonstrate a Four-Fold Quantum Memory

Pasadena, CA | Posted on November 18th, 2010

Their work, described in the November 18 issue of the journal Nature, also demonstrated a quantum interface between the atomic memories—which represent something akin to a computer "hard drive" for entanglement—and four beams of light, thereby enabling the four-fold entanglement to be distributed by photons across quantum networks. The research represents an important achievement in quantum information science by extending the coherent control of entanglement from two to multiple (four) spatially separated physical systems of matter and light.

The proof-of-principle experiment, led by William L. Valentine Professor and professor of physics H. Jeff Kimble, helps to pave the way toward quantum networks. Similar to the Internet in our daily life, a quantum network is a quantum "web" composed of many interconnected quantum nodes, each of which is capable of rudimentary quantum logic operations (similar to the "AND" and "OR" gates in computers) utilizing "quantum transistors" and of storing the resulting quantum states in quantum memories. The quantum nodes are "wired" together by quantum channels that carry, for example, beams of photons to deliver quantum information from node to node. Such an interconnected quantum system could function as a quantum computer, or, as proposed by the late Caltech physicist Richard Feynman in the 1980s, as a "quantum simulator" for studying complex problems in physics.

Quantum entanglement is a quintessential feature of the quantum realm and involves correlations among components of the overall physical system that cannot be described by classical physics. Strangely, for an entangled quantum system, there exists no objective physical reality for the system's properties. Instead, an entangled system contains simultaneously multiple possibilities for its properties. Such an entangled system has been created and stored by the Caltech researchers.

Previously, Kimble's group entangled a pair of atomic quantum memories and coherently transferred the entangled photons into and out of the quantum memories (1). For such two-component—or bipartite—entanglement, the subsystems are either entangled or not. But for multi-component entanglement with more than two subsystems—or multipartite entanglement—there are many possible ways to entangle the subsystems. For example, with four subsystems, all of the possible pair combinations could be bipartite entangled but not be entangled over all four components; alternatively, they could share a "global" quadripartite (four-part) entanglement.

Hence, multipartite entanglement is accompanied by increased complexity in the system. While this makes the creation and characterization of these quantum states substantially more difficult, it also makes the entangled states more valuable for tasks in quantum information science.

To achieve multipartite entanglement, the Caltech team used lasers to cool four collections (or ensembles) of about one million Cesium atoms, separated by 1 millimeter and trapped in a magnetic field, to within a few hundred millionths of a degree above absolute zero. Each ensemble can have atoms with internal spins that are "up" or "down" (analogous to spinning tops) and that are collectively described by a "spin wave" for the respective ensemble. It is these spin waves that the Caltech researchers succeeded in entangling among the four atomic ensembles.

The technique employed by the Caltech team for creating quadripartite entanglement is an extension of the theoretical work of Luming Duan, Mikhail Lukin, Ignacio Cirac, and Peter Zoller in 2001 for the generation of bipartite entanglement by the act of quantum measurement. This kind of "measurement-induced" entanglement for two atomic ensembles was first achieved by the Caltech group in 2005 (2).

In the current experiment, entanglement was "stored" in the four atomic ensembles for a variable time, and then "read out"—essentially, transferred—to four beams of light. To do this, the researchers shot four "read" lasers into the four, now-entangled, ensembles. The coherent arrangement of excitation amplitudes for the atoms in the ensembles, described by spin waves, enhances the matter-light interaction through a phenomenon known as superradiant emission.

"The emitted light from each atom in an ensemble constructively interferes with the light from other atoms in the forward direction, allowing us to transfer the spin wave excitations of the ensembles to single photons," says Akihisa Goban, a Caltech graduate student and coauthor of the paper. The researchers were therefore able to coherently move the quantum information from the individual sets of multipartite entangled atoms to four entangled beams of light, forming the bridge between matter and light that is necessary for quantum networks.

The Caltech team investigated the dynamics by which the multipartite entanglement decayed while stored in the atomic memories. "In the zoology of entangled states, our experiment illustrates how multipartite entangled spin waves can evolve into various subsets of the entangled systems over time, and sheds light on the intricacy and fragility of quantum entanglement in open quantum systems," says Caltech graduate student Kyung Soo Choi, the lead author of the Nature paper. The researchers suggest that the theoretical tools developed for their studies of the dynamics of entanglement decay could be applied for studying the entangled spin waves in quantum magnets.

Further possibilities of their experiment include the expansion of multipartite entanglement across quantum networks and quantum metrology. "Our work introduces new sets of experimental capabilities to generate, store, and transfer multipartite entanglement from matter to light in quantum networks," Choi explains. "It signifies the ever-increasing degree of exquisite quantum control to study and manipulate entangled states of matter and light."

In addition to Kimble, Choi, and Goban, the other authors of the paper, "Entanglement of spin waves among four quantum memories," are Scott Papp, a former postdoctoral scholar in the Caltech Center for the Physics of Information now at the National Institute of Standards and Technology in Boulder, Colorado, and Steven van Enk, a theoretical collaborator and professor of physics at the University of Oregon, and an associate of the Institute for Quantum Information at Caltech.

This research was funded by the National Science Foundation, the National Security Science and Engineering Faculty Fellowship program at the U.S. Department of Defense (DOD), the Northrop Grumman Corporation, and the Intelligence Advanced Research Projects Activity.

(1) media.caltech.edu/press_releases/13115
(2) media.caltech.edu/press_releases/12776

####

For more information, please click here

Contacts:
Jon Weiner

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

Possible Futures

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Quantum Computing

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Quantum nanoscience

The atom without properties April 22nd, 2016

Changing the color of single photons in a diamond quantum memory April 7th, 2016

New state of matter detected in a two-dimensional material April 6th, 2016

Scientists divide magnetic vortices into collectivists and individualists April 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic