Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology: A dead end for plant cells?

Abstract:
New study examines nanoparticles' effects on plants

Nanotechnology: A dead end for plant cells?

St. Louis, MO | Posted on November 18th, 2010

Using particles that are 1/100,000 the width of a human hair to deliver drugs to cells or assist plants in fighting off pests may sound like something out of a science fiction movie, but these scenarios may be a common occurrence in the near future.

Carbon nanotubes, cylindrically shaped carbon molecules with a diameter of about 1 nanometer, have many potential applications in a variety of fields, such as biomedical engineering and medical chemistry. Proteins, nucleic acids, and drugs can be attached to these nanotubes and delivered to cells and organs. Carbon nanotubes can be used to recognize and fight viruses and other pathogens. However, results of studies in animals have also raised concerns about the potential toxicity of nanoparticles.

Recent research by a team of researchers from China, led by Dr. Nan Yao, explored the effects of nanoparticles on plant cells. The findings of Dr. Yao and his colleagues are published in the October issue of the American Journal of Botany.

Dr. Yao and his team of researchers isolated cells from rice as well as from the model plant species Arabidopsis. The researchers treated these cells with carbon nanotubes, and then assessed the cells for viability, damage to DNA, and the presence of reactive oxygen species.

The researchers found an increase in levels of the reactive oxygen species hydrogen peroxide. Reactive oxygen species cause oxidative stress to cells, and this stress can result in programmed cell death. Dr. Yao and his colleagues discovered that the effect of carbon nanotubes on cells was dosage dependent—the greater the dose, the greater the likelihood of cell death. In contrast, cells exposed to carbon particles that were not nanotubes did not suffer any ill effects, demonstrating that the size of the nanotubes is a factor in their toxicity.

"Nanotechnology has a large scope of potential applications in the agriculture industry, however, the impact of nanoparticles have rarely been studied in plants," Dr. Yao said. "We found that nanomaterials could induce programmed cell death in plant cells."

Despite the scientists' observations that carbon nanotubes had toxic effects on plant cells, the use of nanotechnology in the agriculture industry still has great promise. The scientists only observed programmed cell death as a temporary response following the injection of the nanotubes and did not observe further changes a day and a half after the nanotube treatments. Also, the researchers did not observe death at the tissue level, which indicates that injecting cells with carbon nanotubes caused only limited injury.

"The current study has provided evidence that certain carbon nanoparticles are not 100% safe and have side effects on plants, suggesting that potential risks of nanotoxicity on plants need to be assessed," Dr. Yao stated. In the future, Dr. Yao and colleagues are interested in investigating whether other types of nanoparticles may also have toxic effects on plant cells. "We would like to create a predictive toxicology model to track nanoparticles."

Only once scientists have critically examined the risks of nanoparticles can they take advantage of the tremendous potential benefits of this new technology.

CITATION: Cong-Xiang Shen, Quan-Fang Zhang, Jian Li, Fang-Cheng Bi, and Nan Yao (2010). Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany 97(10): 1602-1609. DOI: 10.3732/ajb.1000073

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at www.amjbot.org/cgi/reprint/97/10/1602. After this date, reporters may contact Richard Hund at for a copy of the article.

####

About American Journal of Botany
The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For more information, please click here

Contacts:
Richard Hund

314-577-9557

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Preparing for Nano

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Nanotechnology shows we can innovate without economic growth April 12th, 2012

Thailand to host NanoThailand 2012 December 18th, 2011

Nanotubes/Buckyballs/Fullerenes

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Food/Agriculture/Supplements

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

QuantumSphere Announces Production-Scale Validation of Nano Iron Catalysts for Multi-Billion Dollar Ammonia Industry: Significant Improvement in Ammonia Production for Agricultural Fertilizer, Global Food Crops May 7th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Research seeks alternatives for reducing bacteria in fresh produce using nanoengineering April 29th, 2015

Safety-Nanoparticles/Risk management

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project