Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Methane-powered laptops may be closer than you think

Top view, cathode side, of a free-standing Pt/YSZ/Pt fuel cell showing characteristic buckling patterns. The cell width is 160 microns. Photo courtesy of Shriram Ramanathan
Top view, cathode side, of a free-standing Pt/YSZ/Pt fuel cell showing characteristic buckling patterns. The cell width is 160 microns. Photo courtesy of Shriram Ramanathan

Abstract:
SEAS materials scientists unveil tiny, low-temperature methane fuel cells

Methane-powered laptops may be closer than you think

Cambridge, MA | Posted on November 17th, 2010

Making fuel cells practical and affordable will not happen overnight. It may, however, not take much longer.

With advances in nanostructured devices, lower operating temperatures, and the use of an abundant fuel source and cheaper materials, a group of researchers led by Shriram Ramanathan at the Harvard School of Engineering and Applied Sciences (SEAS) are increasingly optimistic about the commercial viability of the technology.

Ramanathan, an expert and innovator in the development of solid-oxide fuel cells (SOFCs), says they may, in fact, soon become the go-to technology for those on the go.

Electrochemical fuel cells have long been viewed as a potential eco-friendly alternative to fossil fuels—especially as most SOFCs leave behind little more than water as waste.

The obstacles to using SOFCs to charge laptops and phones or drive the next generation of cars and trucks have remained reliability, temperature, and cost.

Fuel cells operate by converting chemical energy (from hydrogen or a hydrocarbon fuel such as methane) into an electric current. Oxygen ions travel from the cathode through the electrolyte toward the anode, where they oxidize the fuel to produce a current of electrons back toward the cathode.

That may seem simple enough in principle, but until now, SOFCs have been more suited for the laboratory rather than the office or garage. In two studies appearing in the Journal of Power Sources this month, Ramanathan's team reported several critical advances in SOFC technology that may quicken their pace to market.

In the first paper, Ramanathan's group demonstrated stable and functional all-ceramic thin-film SOFCs that do not contain any platinum.

In thin-film SOFCs, the electrolyte is reduced to a hundredth or even a thousandth of its usual scale, using densely packed layers of special ceramic films, each just nanometers in thickness. These micro-SOFCs usually incorporate platinum electrodes, but they can be expensive and unreliable.

"If you use porous metal electrodes," explains Ramanathan, "they tend to be inherently unstable over long periods of time. They start to agglomerate and create open circuits in the fuel cells."

Ramanathan's platinum-free micro-SOFC eliminates this problem, resulting in a win-win: lower cost and higher reliability.

In a second paper published this month, the team demonstrated a methane-fueled micro-SOFC operating at less than 500° Celsius, a feat that is relatively rare in the field.

Traditional SOFCs have been operating at about 800-1000°C, but such high temperatures are only practical for stationary power generation. In short, using them to power up a smartphone mid-commute is not feasible.

In recent years, materials scientists have been working to reduce the required operating temperature to about 300-500°C, a range Ramanathan calls the "sweet spot."

Moreover, when fuel cells operate at lower temperatures, material reliability is less critical—allowing, for example, the use of less expensive ceramics and metallic interconnects—and the start-up time can be shorter.

"Low temperature is a holy grail in this field," says Ramanathan. "If you can realize high-performance solid-oxide fuel cells that operate in the 300-500°C range, you can use them in transportation vehicles and portable electronics, and with different types of fuels."

The use of methane, an abundant and cheap natural gas, in the team's SOFC was also of note. Until recently, hydrogen has been the primary fuel for SOFCs. Pure hydrogen, however, requires a greater amount of processing.

"It's expensive to make pure hydrogen," says Ramanathan, "and that severely limits the range of applications."

As methane begins to take over as the fuel of choice, the advances in temperature, reliability, and affordability should continue to reinforce each other.

"Future research at SEAS will explore new types of catalysts for methane SOFCs, with the goal of identifying affordable, earth-abundant materials that can help lower the operating temperature even further," adds Ramanathan.

Fuel cell research at SEAS is funded by the same NSF grant that enabled the "Robobees" project led by Robert J. Wood, Assistant Professor of Electrical Engineering. Wood and Ramanathan hope that micro-SOFCs will provide the tiny power source necessary to get the flying robots off the ground.

Ramanathan's co-authors on the papers were Bo Kuai Lai, a Research Associate at SEAS, and Ph.D. candidate Kian Kerman '14.

####

For more information, please click here

Contacts:
Caroline Perry
617-496-1351

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Announcements

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Energy

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Automotive/Transportation

Clean energy future: New cheap and efficient electrode for splitting water March 18th, 2015

Imperfect graphene opens door to better fuel cells: Membrane could lead to fast-charging batteries for transportation March 18th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Fuel Cells

Graphene 'gateway' discovery opens possibilities for improved energy technologies March 18th, 2015

Imperfect graphene opens door to better fuel cells: Membrane could lead to fast-charging batteries for transportation March 18th, 2015

Graphene membrane could lead to better fuel cells, water filters March 17th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE