Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Methane-powered laptops may be closer than you think

Top view, cathode side, of a free-standing Pt/YSZ/Pt fuel cell showing characteristic buckling patterns. The cell width is 160 microns. Photo courtesy of Shriram Ramanathan
Top view, cathode side, of a free-standing Pt/YSZ/Pt fuel cell showing characteristic buckling patterns. The cell width is 160 microns. Photo courtesy of Shriram Ramanathan

Abstract:
SEAS materials scientists unveil tiny, low-temperature methane fuel cells

Methane-powered laptops may be closer than you think

Cambridge, MA | Posted on November 17th, 2010

Making fuel cells practical and affordable will not happen overnight. It may, however, not take much longer.

With advances in nanostructured devices, lower operating temperatures, and the use of an abundant fuel source and cheaper materials, a group of researchers led by Shriram Ramanathan at the Harvard School of Engineering and Applied Sciences (SEAS) are increasingly optimistic about the commercial viability of the technology.

Ramanathan, an expert and innovator in the development of solid-oxide fuel cells (SOFCs), says they may, in fact, soon become the go-to technology for those on the go.

Electrochemical fuel cells have long been viewed as a potential eco-friendly alternative to fossil fuels—especially as most SOFCs leave behind little more than water as waste.

The obstacles to using SOFCs to charge laptops and phones or drive the next generation of cars and trucks have remained reliability, temperature, and cost.

Fuel cells operate by converting chemical energy (from hydrogen or a hydrocarbon fuel such as methane) into an electric current. Oxygen ions travel from the cathode through the electrolyte toward the anode, where they oxidize the fuel to produce a current of electrons back toward the cathode.

That may seem simple enough in principle, but until now, SOFCs have been more suited for the laboratory rather than the office or garage. In two studies appearing in the Journal of Power Sources this month, Ramanathan's team reported several critical advances in SOFC technology that may quicken their pace to market.

In the first paper, Ramanathan's group demonstrated stable and functional all-ceramic thin-film SOFCs that do not contain any platinum.

In thin-film SOFCs, the electrolyte is reduced to a hundredth or even a thousandth of its usual scale, using densely packed layers of special ceramic films, each just nanometers in thickness. These micro-SOFCs usually incorporate platinum electrodes, but they can be expensive and unreliable.

"If you use porous metal electrodes," explains Ramanathan, "they tend to be inherently unstable over long periods of time. They start to agglomerate and create open circuits in the fuel cells."

Ramanathan's platinum-free micro-SOFC eliminates this problem, resulting in a win-win: lower cost and higher reliability.

In a second paper published this month, the team demonstrated a methane-fueled micro-SOFC operating at less than 500° Celsius, a feat that is relatively rare in the field.

Traditional SOFCs have been operating at about 800-1000°C, but such high temperatures are only practical for stationary power generation. In short, using them to power up a smartphone mid-commute is not feasible.

In recent years, materials scientists have been working to reduce the required operating temperature to about 300-500°C, a range Ramanathan calls the "sweet spot."

Moreover, when fuel cells operate at lower temperatures, material reliability is less critical—allowing, for example, the use of less expensive ceramics and metallic interconnects—and the start-up time can be shorter.

"Low temperature is a holy grail in this field," says Ramanathan. "If you can realize high-performance solid-oxide fuel cells that operate in the 300-500°C range, you can use them in transportation vehicles and portable electronics, and with different types of fuels."

The use of methane, an abundant and cheap natural gas, in the team's SOFC was also of note. Until recently, hydrogen has been the primary fuel for SOFCs. Pure hydrogen, however, requires a greater amount of processing.

"It's expensive to make pure hydrogen," says Ramanathan, "and that severely limits the range of applications."

As methane begins to take over as the fuel of choice, the advances in temperature, reliability, and affordability should continue to reinforce each other.

"Future research at SEAS will explore new types of catalysts for methane SOFCs, with the goal of identifying affordable, earth-abundant materials that can help lower the operating temperature even further," adds Ramanathan.

Fuel cell research at SEAS is funded by the same NSF grant that enabled the "Robobees" project led by Robert J. Wood, Assistant Professor of Electrical Engineering. Wood and Ramanathan hope that micro-SOFCs will provide the tiny power source necessary to get the flying robots off the ground.

Ramanathan's co-authors on the papers were Bo Kuai Lai, a Research Associate at SEAS, and Ph.D. candidate Kian Kerman '14.

####

For more information, please click here

Contacts:
Caroline Perry
617-496-1351

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Announcements

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Energy

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Automotive/Transportation

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE