Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Methane-powered laptops may be closer than you think

Top view, cathode side, of a free-standing Pt/YSZ/Pt fuel cell showing characteristic buckling patterns. The cell width is 160 microns. Photo courtesy of Shriram Ramanathan
Top view, cathode side, of a free-standing Pt/YSZ/Pt fuel cell showing characteristic buckling patterns. The cell width is 160 microns. Photo courtesy of Shriram Ramanathan

Abstract:
SEAS materials scientists unveil tiny, low-temperature methane fuel cells

Methane-powered laptops may be closer than you think

Cambridge, MA | Posted on November 17th, 2010

Making fuel cells practical and affordable will not happen overnight. It may, however, not take much longer.

With advances in nanostructured devices, lower operating temperatures, and the use of an abundant fuel source and cheaper materials, a group of researchers led by Shriram Ramanathan at the Harvard School of Engineering and Applied Sciences (SEAS) are increasingly optimistic about the commercial viability of the technology.

Ramanathan, an expert and innovator in the development of solid-oxide fuel cells (SOFCs), says they may, in fact, soon become the go-to technology for those on the go.

Electrochemical fuel cells have long been viewed as a potential eco-friendly alternative to fossil fuels—especially as most SOFCs leave behind little more than water as waste.

The obstacles to using SOFCs to charge laptops and phones or drive the next generation of cars and trucks have remained reliability, temperature, and cost.

Fuel cells operate by converting chemical energy (from hydrogen or a hydrocarbon fuel such as methane) into an electric current. Oxygen ions travel from the cathode through the electrolyte toward the anode, where they oxidize the fuel to produce a current of electrons back toward the cathode.

That may seem simple enough in principle, but until now, SOFCs have been more suited for the laboratory rather than the office or garage. In two studies appearing in the Journal of Power Sources this month, Ramanathan's team reported several critical advances in SOFC technology that may quicken their pace to market.

In the first paper, Ramanathan's group demonstrated stable and functional all-ceramic thin-film SOFCs that do not contain any platinum.

In thin-film SOFCs, the electrolyte is reduced to a hundredth or even a thousandth of its usual scale, using densely packed layers of special ceramic films, each just nanometers in thickness. These micro-SOFCs usually incorporate platinum electrodes, but they can be expensive and unreliable.

"If you use porous metal electrodes," explains Ramanathan, "they tend to be inherently unstable over long periods of time. They start to agglomerate and create open circuits in the fuel cells."

Ramanathan's platinum-free micro-SOFC eliminates this problem, resulting in a win-win: lower cost and higher reliability.

In a second paper published this month, the team demonstrated a methane-fueled micro-SOFC operating at less than 500° Celsius, a feat that is relatively rare in the field.

Traditional SOFCs have been operating at about 800-1000°C, but such high temperatures are only practical for stationary power generation. In short, using them to power up a smartphone mid-commute is not feasible.

In recent years, materials scientists have been working to reduce the required operating temperature to about 300-500°C, a range Ramanathan calls the "sweet spot."

Moreover, when fuel cells operate at lower temperatures, material reliability is less critical—allowing, for example, the use of less expensive ceramics and metallic interconnects—and the start-up time can be shorter.

"Low temperature is a holy grail in this field," says Ramanathan. "If you can realize high-performance solid-oxide fuel cells that operate in the 300-500°C range, you can use them in transportation vehicles and portable electronics, and with different types of fuels."

The use of methane, an abundant and cheap natural gas, in the team's SOFC was also of note. Until recently, hydrogen has been the primary fuel for SOFCs. Pure hydrogen, however, requires a greater amount of processing.

"It's expensive to make pure hydrogen," says Ramanathan, "and that severely limits the range of applications."

As methane begins to take over as the fuel of choice, the advances in temperature, reliability, and affordability should continue to reinforce each other.

"Future research at SEAS will explore new types of catalysts for methane SOFCs, with the goal of identifying affordable, earth-abundant materials that can help lower the operating temperature even further," adds Ramanathan.

Fuel cell research at SEAS is funded by the same NSF grant that enabled the "Robobees" project led by Robert J. Wood, Assistant Professor of Electrical Engineering. Wood and Ramanathan hope that micro-SOFCs will provide the tiny power source necessary to get the flying robots off the ground.

Ramanathan's co-authors on the papers were Bo Kuai Lai, a Research Associate at SEAS, and Ph.D. candidate Kian Kerman '14.

####

For more information, please click here

Contacts:
Caroline Perry
617-496-1351

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Possible Futures

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Fuel Cells

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic