Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > European Silicon Photonics Project Demonstrates Laser and 10Gb/s Silicon Modulator Using CMOS Fabrication Processes

Abstract:
HELIOS Consortium Developing Building Blocks and Processes To Accelerate Adoption of Silicon Photonics

European Silicon Photonics Project Demonstrates Laser and 10Gb/s Silicon Modulator Using CMOS Fabrication Processes

Grenoble, France | Posted on November 17th, 2010

CEA-Leti, coordinator of the European HELIOS project to accelerate commercialization of silicon photonics, said today project partners demonstrated a laser and a 10Gb/s silicon modulator using a process that is compatible with complementary metal-oxide semiconductor (CMOS) processing.

Silicon photonics is an emerging technology for overcoming electrical connections' limits in processing increasingly data-rich content and reducing the cost of photonic systems by integrating optical and electronic functions on the same chip. The technology may enable low-cost solutions for a range of applications such as optical communications, chip-to-chip and rack-to-rack connections, data-center cables, optical signal processing, optical sensing, and biological applications.

The project, in its second year, is developing building blocks and processes to accelerate the adoption of silicon photonics. The laser was fabricated by first bonding a III-V material (indium phosphide) on top of a CMOS wafer and then processing it using the same equipment as in microelectronics production.

The consortium also demonstrated a 10Gb/s silicon modulator with an extinction ratio of 7dB. The 40Gb/s version has already been designed by the consortium and is under fabrication. First characterization results are expected next year.

"The capability of manufacturing optical components within the CMOS-processing infrastructure is key to realizing the potential of silicon photonics," said Laurent Fulbert, photonics programs manager at Leti and coordinator of HELIOS. "The HELIOS partners are focused on bringing this technology to foundries and component manufacturers for high-volume applications."

In addition to the laser and silicon modulator, building blocks under development by the HELIOS partners include a light modulator, passive waveguides and photodetectors.

Other recent results of the project include:

* Demonstration of high responsivity (0.8-1A/W), low dark current and high BW photodiodes (up to 130 GHz)
* Efficient passive waveguides (Mux/Demux, polarization diversity circuit, fiber coupling, rib/strip transition)
* Establishment of a photonics design flow
* Investigation of novel concepts for light emission and modulation

Most of the results of the second year have been presented at the IEEE Group Four Photonics Conference in Beijing.

The HELIOS consortium also developed a training course addressing all aspects of silicon photonics. This free, 21-hour course is available on HELIOS website:

www.helios-project.eu/Download/Silicon-photonics-course

In addition to Leti, the HELIOS partners are:

- imec (Belgium)
- CNRS (France)
- Alcatel Thales III-V lab (France)
- University of Surrey (UK)
- IMM (Italy)
- University of Paris-Sud (France)
- Technical University of Valencia (Spain)
- University of Trento (Italy)
- University of Barcelona (Spain)
- 3S Photonics (France)
- IHP (Germany)
- Berlin University of Technology (Germany)
- Thales (France)
- DAS Photonics (Spain)
- Austriamicrosystems AG (Austria)
- Technical University of Vienna (Austria)
- Phoenix BV (Netherlands)
- Photline Technologies (France)



The HELIOS Project website address is www.helios-project.eu/

####

About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families.

For more information, please click here

Contacts:
CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Laurent Fulbert
Photonics Programs Manager
+33 4 38 78 38 45


Agency
Amélie Ravier
+33 1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Chip Technology

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

Research partnerships

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic