Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study uncovers redox response properties of largest-ever polymeric o-phenylenes

Figure 1: (Top) Molecular formula of a polymeric o-phenylene.  (Bottom) Schematic illustration of a helical structure of polymeric o-phenylene.
Figure 1: (Top) Molecular formula of a polymeric o-phenylene. (Bottom) Schematic illustration of a helical structure of polymeric o-phenylene.

Abstract:
New findings by researchers at RIKEN and the Japan Science and Technology Agency (JST) have shed light on the remarkable electrochemical response properties of an elusive class of molecular helix structures, charting a new path in the design of molecular machines and devices.

Study uncovers redox response properties of largest-ever polymeric o-phenylenes

UK | Posted on November 16th, 2010

Among the most ubiquitous structural motifs in nature, helices play an essential role in a wide range of biological processes. The capacity of certain helix structures to respond to external stimuli by changing shape, in particular, offers key insights in the design of functional molecular devices. As of yet, however, few such structures have been identified that respond to electrochemical inputs, one of the most important types of stimuli.

Now a class of helical structures has been found to do this, and more. o-Phenylenes are densely-packed chains of phenylene (C6H4) compounds linked together at their ortho positions by heavily-angled connections. Despite potentially rich conformational behavior, o-phenylenes are difficult to study and have been all but forgotten since their discovery more than 50 years ago.

In a paper in Nature Chemistry, the RIKEN/JST research group demonstrates a method for synthesizing polymeric o-phenylenes on scales never before observed, the largest reaching some 48 phenylene units. Problems of electrochemical instability which plagued earlier studies are solved by introducing a nitrogen group to the end of the o-phenylene chain, enabling first-ever exploration of o-phenylene oxidation-reduction response.

Experiments with the new o-phenylenes revealed intriguing results. In solution, the helices depart from their folded form to undergo rapid inversion between clockwise and anti-clockwise orientations, yet when they crystallize, they converge uniformly to only one orientation, in a rare process called chiral symmetry-breaking. Removal of a single electron, meanwhile, converts helices across the entire solution to a more compact form, slowing the inversion rate by a factor of more than 450.

Through its parallel to permanent and long-lasting memory, this unique form of conformational rigidity alterable by electrical inputs offers a completely new design concept for nanotechnology, opening new avenues for the design of molecular wires and other nano-scale devices.

Reference:

Eisuke Ohta, Hiroyasu Sato, Shinji Ando, Atsuko Kosaka, Takanori Fukushima, Daisuke Hashizume, Mikio Yamasaki, Kimiko Hasegawa, Azusa Muraoka, Hiroshi Ushiyama and Takuzo Aida. Redox-responsive molecular helices with highly condensed p -clouds. Nature Chemistry (2010). DOI:10.1038/NCHEM.900

####

For more information, please click here

Contacts:
Dr. Takuzo Aida
Functional Soft Matter Research Group
RIKEN Advanced Science Institute
Tel: +81-(0)3-5841-7251
Fax: +81-(0)3-5841-7310

Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Fax: +81-(0)48-463-3687

Copyright © ResearchSEA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Molecular Machines

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE