Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Study uncovers redox response properties of largest-ever polymeric o-phenylenes

Figure 1: (Top) Molecular formula of a polymeric o-phenylene.  (Bottom) Schematic illustration of a helical structure of polymeric o-phenylene.
Figure 1: (Top) Molecular formula of a polymeric o-phenylene. (Bottom) Schematic illustration of a helical structure of polymeric o-phenylene.

Abstract:
New findings by researchers at RIKEN and the Japan Science and Technology Agency (JST) have shed light on the remarkable electrochemical response properties of an elusive class of molecular helix structures, charting a new path in the design of molecular machines and devices.

Study uncovers redox response properties of largest-ever polymeric o-phenylenes

UK | Posted on November 16th, 2010

Among the most ubiquitous structural motifs in nature, helices play an essential role in a wide range of biological processes. The capacity of certain helix structures to respond to external stimuli by changing shape, in particular, offers key insights in the design of functional molecular devices. As of yet, however, few such structures have been identified that respond to electrochemical inputs, one of the most important types of stimuli.

Now a class of helical structures has been found to do this, and more. o-Phenylenes are densely-packed chains of phenylene (C6H4) compounds linked together at their ortho positions by heavily-angled connections. Despite potentially rich conformational behavior, o-phenylenes are difficult to study and have been all but forgotten since their discovery more than 50 years ago.

In a paper in Nature Chemistry, the RIKEN/JST research group demonstrates a method for synthesizing polymeric o-phenylenes on scales never before observed, the largest reaching some 48 phenylene units. Problems of electrochemical instability which plagued earlier studies are solved by introducing a nitrogen group to the end of the o-phenylene chain, enabling first-ever exploration of o-phenylene oxidation-reduction response.

Experiments with the new o-phenylenes revealed intriguing results. In solution, the helices depart from their folded form to undergo rapid inversion between clockwise and anti-clockwise orientations, yet when they crystallize, they converge uniformly to only one orientation, in a rare process called chiral symmetry-breaking. Removal of a single electron, meanwhile, converts helices across the entire solution to a more compact form, slowing the inversion rate by a factor of more than 450.

Through its parallel to permanent and long-lasting memory, this unique form of conformational rigidity alterable by electrical inputs offers a completely new design concept for nanotechnology, opening new avenues for the design of molecular wires and other nano-scale devices.

Reference:

Eisuke Ohta, Hiroyasu Sato, Shinji Ando, Atsuko Kosaka, Takanori Fukushima, Daisuke Hashizume, Mikio Yamasaki, Kimiko Hasegawa, Azusa Muraoka, Hiroshi Ushiyama and Takuzo Aida. Redox-responsive molecular helices with highly condensed p -clouds. Nature Chemistry (2010). DOI:10.1038/NCHEM.900

####

For more information, please click here

Contacts:
Dr. Takuzo Aida
Functional Soft Matter Research Group
RIKEN Advanced Science Institute
Tel: +81-(0)3-5841-7251
Fax: +81-(0)3-5841-7310

Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Fax: +81-(0)48-463-3687

Copyright © ResearchSEA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Molecular Machines

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE