Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > All optical transistor

Abstract:

12.11.10 - In an article appearing on November 11th in the journal Science, researchers at EPFL and the Max Planck Institute of Quantum Optics announce the discovery of a method for coupling photons and mechanical vibrations that could have numerous applications in telecommunications and quantum information technologies.

All optical transistor

Lausanne, Switzerland | Posted on November 15th, 2010

Controlling and modulating the flow of light is essential in today's telecommunications-based society. Professor Tobias Kippenberg and his team in EPFL's Laboratory of Photonics and Quantum Measurements have discovered a novel way to couple light and vibrations. Using this discovery, they built a device in which a beam of light traveling through an optical microresonator could be controlled by a second, stronger light beam. The device thus acts like an optical transistor, in which one light beam influences the intensity of another.

Their optical microresonator has two characteristics: first, it traps light in a tiny glass structure, guiding the beam into a circular pattern. Second, the structure vibrates, like a wine glass, at well-defined frequencies. Because the structure is so tiny (a fraction of the diameter of a human hair), these frequencies are 10,000 times higher than a wineglass vibration. When light is injected into the device, the photons exert a force called radiation pressure, which is greatly enhanced by the resonator. The increasing pressure deforms the cavity, coupling the light to the mechanical vibrations. If two light beams are used, the interaction of the two lasers with the mechanical vibrations results in a kind of optical "switch": the strong "control" laser can turn on or off a weaker "probe" laser just as in a electronic transistor.

"We have known for more than two years that this effect was theoretically possible," explains Max-Planck Institute scientist Albert Schliesser, but pinning it down proved difficult. "Once we knew where to look, it was right there," recalls EPFL PhD student Stefan Weis, one of the lead authors of the paper. Senior EPFL scientist Samuel Deléglise notes that "the agreement between theory and experiment is really striking."

Applications of this novel effect, baptised "OMIT" (optomechanically-induced transparency), could provide entirely new functionality to photonics. Radiation-to-vibration conversions are already widely used; in mobile phones, for example, a receiver converts electromagnetic radiation to mechanical vibration, enabling the signal to be filtered efficiently. But it has been impossible to do this kind of conversion with light. With an OMIT-based device, an optical light field could for the first time be converted into a mechanical vibration. This could open up a huge range of possibilities in telecommunications. For example, novel optical buffers could be designed that could store optical information for up to several seconds.

On a more fundamental level, researchers around the world have been trying to find ways to control optomechanical systems at the quantum level: the switchable coupling demonstrated by the EPFL-Max Planck team could help the community clear this hurdle, by serving as an important interface in hybrid quantum systems.

####

For more information, please click here

Copyright © Ecole Polytechnique Federale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Quantum Computing

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Record-breaking logic gate 'another important milestone' on road to quantum computers August 7th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Quantum nanoscience

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Scientists discover light could exist in a previously unknown form August 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic