Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Breaking the ice before it begins

Ice accumulation on flat aluminum (A), smooth fluorinated Si (B), and microstructured fluorinated Si (C) surfaces.
Ice accumulation on flat aluminum (A), smooth fluorinated Si (B), and microstructured fluorinated Si (C) surfaces.

Abstract:
Nanostructured materials repel water droplets before they have a chance to freeze

Breaking the ice before it begins

Cambridge, MA | Posted on November 15th, 2010

Engineers from Harvard University have designed and demonstrated ice-free nanostructured materials that literally repel water droplets before they even have the chance to freeze.

The finding, reported online in ACS Nano on November 9th, could lead to a new way to keep airplane wings, buildings, powerlines, and even entire highways free of ice during the worst winter weather. Moreover, integrating anti-ice technology right into a material is more efficient and sustainable than conventional solutions like chemical sprays, salt, and heating.

A team led by Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Member of the Wyss Institute for Biologically Inspired Engineering at Harvard, focused on preventing rather than fighting ice buildup.

"We wanted to take a completely different tact and design materials that inherently prevent ice formation by repelling the water droplets," says Aizenberg. "From past studies, we also realized that the formation of ice is not a static event. The crucial approach was to investigate the entire dynamic process of how droplets impact and freeze on a supercooled surface."

For initial inspiration, the researchers turned to some elegant solutions seen in nature. For example, mosquitos can defog their eyes, and water striders can keep their legs dry thanks to an array of tiny bristles that repel droplets by reducing the surface area each one encounters.

"Freezing starts with droplets colliding with a surface," explains Aizenberg. "But very little is known about what happens when droplets hit surfaces at low temperatures."

To gain a detailed understanding of the process, the researchers watched high-speed videos of supercooled droplets hitting surfaces that were modeled after those found in nature. They saw that when a cold droplet hits the nanostructured surface, it first spreads out, but then the process runs in reverse: the droplet retracts to a spherical shape and bounces back off the surface before ever having a chance to freeze.

By contrast, on a smooth surface without the structured properties, a droplet remains spread out and eventually freezes.

"We fabricated surfaces with various geometries and feature sizes—bristles, blades, and interconnected patterns such as honeycombs and bricks—to test and understand parameters critical for optimization," says Lidiya Mishchenko, a graduate student in Aizenberg's lab and first author of the paper.

The use of such precisely engineered materials enabled the researchers to model the dynamic behavior of impacting droplets at an amazing level of detail, leading them to create a better design for ice-preventing materials.

Another important benefit of testing a wide variety of structures, Mishchenko adds, was that it allowed the team to optimize for pressure-stability. They discovered that the structures composed of interconnected patterns were ideally suited for stable, liquid-repelling surfaces that can withstand high-impact droplet collisions, such as those encountered in driving rain or by planes in flight.

The nanostructured materials prevent the formation of ice even down to temperatures as low as -25 to -30 degrees Celsius. Below that, due to the reduced contact area that prevents the droplets from fully wetting the surface, any ice that forms does not adhere well and is much easier to remove than the stubborn sheets that can form on flat surfaces.

"We see this approach as a radical and much needed shift in anti-ice technologies," says Aizenberg. "The concept of friction-free surfaces that deflect supercooled water droplets before ice nucleation can even occur is more than just a theory or a proof-of-principle experiments. We have begun to test this promising technology in real-world settings to provide a comprehensive framework for optimizing these robust ice-free surfaces for a wide range of applications, each of which may have a specific set of performance requirements."

In comparison with traditional ice prevention or removal methods like salting or heating, the nanostructured materials approach is efficient, non-toxic, and environmentally friendly. Further, when chemicals are used to de-ice a plane, for example, they can be washed away into the environment and their disposal must be carefully monitored. Similarly, salt on roads can lead to corrosion and run-off problems in local water sources.

The researchers anticipate that with their improved understanding of the ice forming process, a new type of coating integrated directly into a variety of materials could soon be developed and commercialized.

In addition to Aizenberg, who is also the Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study and a Professor of Chemistry and Chemical Biology at Harvard, and Mishchenko, the co-authors of the paper included Benjamin Hatton and Vaibhav Bahadur, both at SEAS and Wyss, and Ashley Taylor and Tom Krupenkin, both at the University of Wisconsin-Madison.

The researchers acknowledge L. Stirling and A. Grinthal for their valuable contribution and funding from DARPA (Award Number HR0011-08-C-0114); the Wyss Institute for Biologically Inspired Engineering at Harvard University; and the U.S. Department of Homeland Security (DHS) Scholarship and Fellowship Program.

####

For more information, please click here

Contacts:
Michael Patrick Rutter
617-496-3815

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Automotive/Transportation

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

The gold standard December 9th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Home

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Industrial Nanotech, Inc. Announces Agreement with Eagle Roofing Products to Produce Ultra-Premium Concrete Roof Tile June 17th, 2014

SABIC collaborates with Cima NanoTech on breakthrough technology: industry-first transparent conductive polycarbonate film May 29th, 2014

Aerospace/Space

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Atmospheric carbon dioxide used for energy storage products December 2nd, 2014

Deep Space Industries and Solid Prototype Announce a Strategic Partnership: Solid Prototype Inc integrates with DSI’s spacecraft design process, helping reduce costs and decrease turnaround time December 1st, 2014

Industrial

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Simple, Biocompatible Method Developed for Production of Cerium Oxide Nanoparticles December 9th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Construction

Sustainable Nanotechnologies Project November 20th, 2014

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

Obtaining Optimum Formulation in Soundproof, Thermal Insulators November 3rd, 2014

7th Nanotechnology Festival, Exhibition Kicks Off Work in Iran October 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE