Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breaking the ice before it begins

Ice accumulation on flat aluminum (A), smooth fluorinated Si (B), and microstructured fluorinated Si (C) surfaces.
Ice accumulation on flat aluminum (A), smooth fluorinated Si (B), and microstructured fluorinated Si (C) surfaces.

Abstract:
Nanostructured materials repel water droplets before they have a chance to freeze

Breaking the ice before it begins

Cambridge, MA | Posted on November 15th, 2010

Engineers from Harvard University have designed and demonstrated ice-free nanostructured materials that literally repel water droplets before they even have the chance to freeze.

The finding, reported online in ACS Nano on November 9th, could lead to a new way to keep airplane wings, buildings, powerlines, and even entire highways free of ice during the worst winter weather. Moreover, integrating anti-ice technology right into a material is more efficient and sustainable than conventional solutions like chemical sprays, salt, and heating.

A team led by Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Member of the Wyss Institute for Biologically Inspired Engineering at Harvard, focused on preventing rather than fighting ice buildup.

"We wanted to take a completely different tact and design materials that inherently prevent ice formation by repelling the water droplets," says Aizenberg. "From past studies, we also realized that the formation of ice is not a static event. The crucial approach was to investigate the entire dynamic process of how droplets impact and freeze on a supercooled surface."

For initial inspiration, the researchers turned to some elegant solutions seen in nature. For example, mosquitos can defog their eyes, and water striders can keep their legs dry thanks to an array of tiny bristles that repel droplets by reducing the surface area each one encounters.

"Freezing starts with droplets colliding with a surface," explains Aizenberg. "But very little is known about what happens when droplets hit surfaces at low temperatures."

To gain a detailed understanding of the process, the researchers watched high-speed videos of supercooled droplets hitting surfaces that were modeled after those found in nature. They saw that when a cold droplet hits the nanostructured surface, it first spreads out, but then the process runs in reverse: the droplet retracts to a spherical shape and bounces back off the surface before ever having a chance to freeze.

By contrast, on a smooth surface without the structured properties, a droplet remains spread out and eventually freezes.

"We fabricated surfaces with various geometries and feature sizes—bristles, blades, and interconnected patterns such as honeycombs and bricks—to test and understand parameters critical for optimization," says Lidiya Mishchenko, a graduate student in Aizenberg's lab and first author of the paper.

The use of such precisely engineered materials enabled the researchers to model the dynamic behavior of impacting droplets at an amazing level of detail, leading them to create a better design for ice-preventing materials.

Another important benefit of testing a wide variety of structures, Mishchenko adds, was that it allowed the team to optimize for pressure-stability. They discovered that the structures composed of interconnected patterns were ideally suited for stable, liquid-repelling surfaces that can withstand high-impact droplet collisions, such as those encountered in driving rain or by planes in flight.

The nanostructured materials prevent the formation of ice even down to temperatures as low as -25 to -30 degrees Celsius. Below that, due to the reduced contact area that prevents the droplets from fully wetting the surface, any ice that forms does not adhere well and is much easier to remove than the stubborn sheets that can form on flat surfaces.

"We see this approach as a radical and much needed shift in anti-ice technologies," says Aizenberg. "The concept of friction-free surfaces that deflect supercooled water droplets before ice nucleation can even occur is more than just a theory or a proof-of-principle experiments. We have begun to test this promising technology in real-world settings to provide a comprehensive framework for optimizing these robust ice-free surfaces for a wide range of applications, each of which may have a specific set of performance requirements."

In comparison with traditional ice prevention or removal methods like salting or heating, the nanostructured materials approach is efficient, non-toxic, and environmentally friendly. Further, when chemicals are used to de-ice a plane, for example, they can be washed away into the environment and their disposal must be carefully monitored. Similarly, salt on roads can lead to corrosion and run-off problems in local water sources.

The researchers anticipate that with their improved understanding of the ice forming process, a new type of coating integrated directly into a variety of materials could soon be developed and commercialized.

In addition to Aizenberg, who is also the Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study and a Professor of Chemistry and Chemical Biology at Harvard, and Mishchenko, the co-authors of the paper included Benjamin Hatton and Vaibhav Bahadur, both at SEAS and Wyss, and Ashley Taylor and Tom Krupenkin, both at the University of Wisconsin-Madison.

The researchers acknowledge L. Stirling and A. Grinthal for their valuable contribution and funding from DARPA (Award Number HR0011-08-C-0114); the Wyss Institute for Biologically Inspired Engineering at Harvard University; and the U.S. Department of Homeland Security (DHS) Scholarship and Fellowship Program.

####

For more information, please click here

Contacts:
Michael Patrick Rutter
617-496-3815

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Possible Futures

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Discoveries

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Materials/Metamaterials

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Automotive/Transportation

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Home

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

Aerospace/Space

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Quantum satellite device tests technology for global quantum network: Singapore-built satellite makes and measures light particles pair by pair June 3rd, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Industrial

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Construction

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

SiC Nanoparticles Applied to Modify Properties of Portland Cement January 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic