Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A new read on DNA sequencing

Stuart Lindsay is a biohysicist at the Biodesign Institute at Arizona State University. Credit: The Biodesign Institute at Arizona State University
Stuart Lindsay is a biohysicist at the Biodesign Institute at Arizona State University. Credit: The Biodesign Institute at Arizona State University

Abstract:
Stuart Lindsay, of the Biodesign Institute at Arizona State University, has demonstrated a technique that may lead to rapid, low cost reading of whole genomes

A new read on DNA sequencing

Phoenix, AZ | Posted on November 15th, 2010

The twisting, ladder-like form of the DNA molecule—the architectural floor plan of life—contains a universe of information critical to human health. Enormous effort has been invested in deciphering the genetic code, including, most famously, the Human Genome Project. Nevertheless, the process of reading some three-billion nucleotide "letters" to reveal an individual's full genome remains a costly and complex undertaking.

Now biophysicist Stuart Lindsay, of the Biodesign Institute at Arizona State University, has demonstrated a technique that may lead to rapid, low cost reading of whole genomes, through recognition of the basic chemical units—the nucleotide bases that make up the DNA double helix. An affordable technique for DNA sequencing would be a tremendous advance for medicine, allowing routine clinical genomic screening for diagnostic purposes; the design of a new generation of custom-fit pharmaceuticals; and even genomic tinkering to enhance cellular resistance to viral or bacterial infection.

Lindsay is an ASU Regents' Professor and Carson Presidential Chair of Physics and Chemistry as well as director of the Biodesign Institute's Center for Single Molecule Biophysics. His group's research appears in the current issue of the journal Nature Nanotechnology.

Lindsay's technique for reading the DNA code relies on a fundamental property of matter known as quantum tunneling, which operates at the subatomic scale. According to quantum theory, elementary particles like electrons can do some very strange and counter-intuitive things, in defiance of classical laws of physics. Such sub-atomic, quantum entities possess both a particle and a wave-like nature. Part of the consequence of this is that an electron has some probability of moving from one side of a barrier to the other, regardless of the height or width of such a barrier.

Remarkably, an electron can accomplish this feat, even when the potential energy of the barrier exceeds the kinetic energy of the particle. Such behavior is known as quantum tunneling, and the flow of electrons is a tunneling current. Tunneling is confined to small distances—so small that a tunnel junction should be able to read one DNA base (there are four of them in the gentic code, A,T,C and G) at a time without interference from flanking bases. But the same sensitivity to distance means that vibrations of the DNA, or intervening water molecules, ruin the tunneling signal. So the Lindsay group has developed "recognition molecules" that "grab hold" of each base in turn, clutching the base against the electrodes that read out the signal. They call this new method "recognition tunneling."

The current paper in Nature Nanotechnology shows that single bases inside a DNA chain can indeed be read with tunneling, without interference from neighboring bases. Each base generates a distinct electronic signal, current spikes of a particular size and frequency that serve to identify each base. Surprisingly, the technique even recognizes a small chemical change that nature sometimes uses to fine-tune the expression of genes, the so called "epigenetic" code. While an individual's genetic code is the same in every cell, the epigenetic code is tissue and cell specific and unlike the genome itself, the epigenome can respond to environmental changes during an individual's life.

To read longer lengths of DNA, Lindsay's group is working to couple the tunneling readout to a nanopore—a tiny hole through which DNA is dragged, one base at a time, by an electric field. The paper in Nature Nanotechnology has something to say about this problem too. "It has always been believed that the problem with passing DNA through a nanopore is that it flies through so quickly that there is no time to read the sequence" Lindsay says. Surprisingly, the tunneling signals reported in the Nanture Nanotechnology paper last for a long time—nearly a second per base read.

To test this result, Lindsay teamed with a colleague, Robert Ros, to measure how hard one has to pull to break the complex of a DNA base plus the recognition molecules. They did this with an atomic force microscope. "These measurements confirmed the long lifetime of the complex, and also showed that the reading time could be speeded up at will by the application of a small additional pulling force" says Ros. "Thus the stage is set for combining tunneling reads with a device that passes DNA through a nanopore" says Lindsay.

Sequencing through recognition tunneling, if proven successful for whole genome reading, could represent a substantial savings in cost and hopefully, in time as well. Existing methods of DNA sequencing typically rely on cutting the full molecule into thousands of component bits, snipping apart the ladder of complementary bases and reading these fragments. Later, the pieces must be meticulously re-assembled, with the aid of massive computing power. "Direct readout of the epigenetic code holds the key to understanding why cells in different tissues are different, despite having the same genome" Lindsay adds, a reference to the new ability to read epigenetic modifications with tunneling.

Lindsay stresses much work remains to be done before the application of sequencing by recognition can become a clinical reality. "Right now, we can only read two or three bases as the tunneling probe drifts over them, and some bases are more accurately identified than others," he says. However, the group expects this to improve as future generations of recognition molecules are synthesized.

"The basic physics is now demonstrated" Lindsay says, adding "perhaps it will soon be possible to incorporate these principles into mass produced computer chips." The day of the "genome on a lap-top" might be coming sooner than previously thought possible.

####

For more information, please click here

Contacts:
Joseph Caspermeyer

480-727-0369

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Physics

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

Get ready for NanoDays! March 5th, 2015

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Nanobiotechnology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE