Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sugar and slice make graphene real nice

Monolayer graphene can be derived from solid PMMA films on copper substrates in a technique developed at Rice University. Researchers found other substances -- including plain table sugar -- can also be used as a source of carbon for graphene. (Credit: Tour Lab/Rice University)
Monolayer graphene can be derived from solid PMMA films on copper substrates in a technique developed at Rice University. Researchers found other substances -- including plain table sugar -- can also be used as a source of carbon for graphene. (Credit: Tour Lab/Rice University)

Abstract:
Rice University lab finds table sugar, metallic sheets produce pristine graphene in one step

Sugar and slice make graphene real nice

Houston, TX | Posted on November 11th, 2010

Future computers may run a little sweeter, thanks to a refinement in the manufacture of graphene at Rice University.

Rice researchers have learned to make pristine sheets of graphene, the one-atom-thick form of carbon, from plain table sugar and other carbon-based substances. They do so in a one-step process at temperatures low enough to make graphene easy to manufacture.

The lab of Rice chemist James Tour reported in the online version of the journal Nature this week that large-area, high-quality graphene can be grown from a number of carbon sources at temperatures as low as 800 degrees Celsius (1,472 F). As hot as that may seem, the difference between running a furnace at 800 and 1,000 degrees Celsius is significant, Tour said.

"At 800 degrees, the underlying silicon remains active for electronics, whereas at 1,000 degrees, it loses its critical dopants," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

Zhengzong Sun, a fourth-year graduate student in Tour's lab and primary author of the paper, found that depositing carbon-rich sources on copper and nickel substrates produced graphene in any form he desired: single-, bi- or multilayer sheets that could be highly useful in a number of applications.

Sun and his colleagues also found the process adapts easily to producing doped graphene; this allows the manipulation of the material's electronic and optical properties, which is important for making switching and logic devices.

For pristine graphene, Sun started with a thin film of poly (methyl methacrylate) (PMMA) -- perhaps best known in its commercial guise as Plexiglas -- spun onto a copper substrate that acted as a catalyst. Under heat and low pressure, flowing hydrogen and argon gas over the PMMA for 10 minutes reduced it to pure carbon and turned the film into a single layer of graphene. Changing the gas-flow rate allowed him to control the thickness of the PMMA-derived graphene.

Then it got more interesting, Sun said. He turned to other carbon sources, including a fine powder of sucrose -- aka table sugar. "We thought it would be interesting to try this stuff," Sun said. "While other labs were changing the metal catalysts, we tried changing the carbon sources."

Sun put 10 milligrams of sugar (and later fluorene) on a square-centimeter sheet of copper foil and subjected it to the same reactor conditions as the PMMA. It was quickly transformed into single-layer graphene. Sun had expected defects in the final product, given the chemical properties of both substances (a high concentration of oxygen in sucrose, five-atom rings in fluorene); but he found potential topological defects would self-heal as the graphene formed.

"As we looked deeper and deeper into the process, we found it was not only interesting, but useful," Sun said.

He tried and failed to grow graphene on silicon and silicon oxide, which raised the possibility of growing patterned graphene from a thin film of shaped copper or nickel deposited onto silicon wafers.

Doped graphene opens more possibilities for electronics use, Tour said, and Sun found it fairly simple to make. Starting with PMMA mixed with a doping reagent, melamine, he discovered that flowing the gas under atmospheric pressure produced nitrogen-doped graphene. Pristine graphene has no bandgap, but doped graphene allows control of the electrical structure, which the team proved by building field-effect transistors.

"Each day, the growth of graphene on silicon is approaching industrial-level readiness, and this work takes it an important step further," Tour said.

Co-authors of the study were Rice graduate students Zheng Yan, Jun Yao and Elvira Beitler and postdoctoral research associate Yu Zhu.

The Air Force Office of Scientific Research and the Office of Naval Research Multidisciplinary Research Program on graphene supported the research.

Related materials

Read the abstract here: www.nature.com/nature/journal/vaop/ncurrent/abs/nature09579.html

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jessica Stark
713-348-6777


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Chemistry

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Possible Futures

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Academic/Education

Luleň University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Chip Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Scientists make transparent materials absorb light December 1st, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanoelectronics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Announcements

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project