Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sugar and slice make graphene real nice

Monolayer graphene can be derived from solid PMMA films on copper substrates in a technique developed at Rice University. Researchers found other substances -- including plain table sugar -- can also be used as a source of carbon for graphene. (Credit: Tour Lab/Rice University)
Monolayer graphene can be derived from solid PMMA films on copper substrates in a technique developed at Rice University. Researchers found other substances -- including plain table sugar -- can also be used as a source of carbon for graphene. (Credit: Tour Lab/Rice University)

Abstract:
Rice University lab finds table sugar, metallic sheets produce pristine graphene in one step

Sugar and slice make graphene real nice

Houston, TX | Posted on November 11th, 2010

Future computers may run a little sweeter, thanks to a refinement in the manufacture of graphene at Rice University.

Rice researchers have learned to make pristine sheets of graphene, the one-atom-thick form of carbon, from plain table sugar and other carbon-based substances. They do so in a one-step process at temperatures low enough to make graphene easy to manufacture.

The lab of Rice chemist James Tour reported in the online version of the journal Nature this week that large-area, high-quality graphene can be grown from a number of carbon sources at temperatures as low as 800 degrees Celsius (1,472 F). As hot as that may seem, the difference between running a furnace at 800 and 1,000 degrees Celsius is significant, Tour said.

"At 800 degrees, the underlying silicon remains active for electronics, whereas at 1,000 degrees, it loses its critical dopants," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

Zhengzong Sun, a fourth-year graduate student in Tour's lab and primary author of the paper, found that depositing carbon-rich sources on copper and nickel substrates produced graphene in any form he desired: single-, bi- or multilayer sheets that could be highly useful in a number of applications.

Sun and his colleagues also found the process adapts easily to producing doped graphene; this allows the manipulation of the material's electronic and optical properties, which is important for making switching and logic devices.

For pristine graphene, Sun started with a thin film of poly (methyl methacrylate) (PMMA) -- perhaps best known in its commercial guise as Plexiglas -- spun onto a copper substrate that acted as a catalyst. Under heat and low pressure, flowing hydrogen and argon gas over the PMMA for 10 minutes reduced it to pure carbon and turned the film into a single layer of graphene. Changing the gas-flow rate allowed him to control the thickness of the PMMA-derived graphene.

Then it got more interesting, Sun said. He turned to other carbon sources, including a fine powder of sucrose -- aka table sugar. "We thought it would be interesting to try this stuff," Sun said. "While other labs were changing the metal catalysts, we tried changing the carbon sources."

Sun put 10 milligrams of sugar (and later fluorene) on a square-centimeter sheet of copper foil and subjected it to the same reactor conditions as the PMMA. It was quickly transformed into single-layer graphene. Sun had expected defects in the final product, given the chemical properties of both substances (a high concentration of oxygen in sucrose, five-atom rings in fluorene); but he found potential topological defects would self-heal as the graphene formed.

"As we looked deeper and deeper into the process, we found it was not only interesting, but useful," Sun said.

He tried and failed to grow graphene on silicon and silicon oxide, which raised the possibility of growing patterned graphene from a thin film of shaped copper or nickel deposited onto silicon wafers.

Doped graphene opens more possibilities for electronics use, Tour said, and Sun found it fairly simple to make. Starting with PMMA mixed with a doping reagent, melamine, he discovered that flowing the gas under atmospheric pressure produced nitrogen-doped graphene. Pristine graphene has no bandgap, but doped graphene allows control of the electrical structure, which the team proved by building field-effect transistors.

"Each day, the growth of graphene on silicon is approaching industrial-level readiness, and this work takes it an important step further," Tour said.

Co-authors of the study were Rice graduate students Zheng Yan, Jun Yao and Elvira Beitler and postdoctoral research associate Yu Zhu.

The Air Force Office of Scientific Research and the Office of Naval Research Multidisciplinary Research Program on graphene supported the research.

Related materials

Read the abstract here: www.nature.com/nature/journal/vaop/ncurrent/abs/nature09579.html

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jessica Stark
713-348-6777


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Chemistry

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Academic/Education

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

Chip Technology

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

Nanotubes/Buckyballs

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Taking aircraft manufacturing out of the oven: New technique uses carbon nanotube film to directly heat and cure composite materials April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Nanoelectronics

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Solution-grown nanowires make the best lasers April 14th, 2015

Water makes wires even more nano: Rice University lab extends meniscus-mask process to make sub-10 nanometer paths April 6th, 2015

Demonstration of 50GHz Ge Waveguide Electro-Absorption Modulator April 2nd, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE