Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Nanofiber Revolution: University Researchers Publish First Results – Forcespinning™ Technology

Abstract:
Researchers at the University of Texas - Pan American have published the first results of their work utilizing Forcespinning™ Technology to fabricate polymeric nanofibers and metallic nanowires. The article, which appears in the November issue of the peer-reviewed journal Materials Today, was authored by Drs. Karen Lozano and Kamal Sarkar.

A Nanofiber Revolution: University Researchers Publish First Results – Forcespinning™ Technology

Edinburg, TX | Posted on November 9th, 2010

Taking the term revolution literally, Forcespinning™ is a patent pending technology that utilizes centrifugal force instead of hot air or an electrostatic charge to draw submicron fibers from liquid state materials. In the paper, the researchers outline their astounding results including average fiber diameters of 300 nanometers, homogenous fibers, and dramatic productivity increases. Furthermore, they demonstrate the amazing versatility of the technology by processing a broad range of materials from polyesters to biopolymers to pure metals.

"Nanofibers and nanowires have incredible properties and applications in aerospace, filtration, tissue engineering, drug delivery, and nonwovens," says Dr. Karen Lozano. She went on to say, "We found a very unique and simple way to process them that overcame many previous limitations, which enabled a broader range of materials, simple and repeatable results, greater control over fiber diameter, and unparalled productive capacity."

In 2010, Forcespinning™ received the Silver Award from The World's Best Technology Showcase and was recognized as a 2010 Innovation That Will Change the Way You Manufacture by the Society of Manufacturing Engineers. The technology has been licensed by the university to FibeRio Technology Corporation, a company that recently announced the launch of the Cyclone L-1000 Series, the first commercially available nanofiber production equipment that facilitates Forcespinning™.

For more information, please call FibeRio at 956-207-5448.

####

About FibeRio Technology Corporation
FibeRio was formed to make Forcespinning™ Technology, the next generation of nanofiber production equipment, commercially available for both research and development and high-volume industrial applications. Originally developed as an alternative to the electrospinning process of fabricating polymeric nanofibers, Forcespinning™ is so thoroughly innovative that it can also process metals, ceramics, carbon and conductive polymers in the nanoscale – all at commercial production levels. Forcespinning™ Technology utilizes centrifugal force rather than electrostatic force. Without electrostatic force, an entire new realm of possibilities opens up. FibeRio currently offers the Cyclone L-1000 Series nanofiber research and development systems. Subsequent products are being developed for commercial applications that will offer unparalleled levels of production capacity and substrate deposition.

For more information, please click here

Contacts:
Kial Gramley
Phone: 956-207-5448

Copyright © FibeRio Technology Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic