Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A Nanofiber Revolution: University Researchers Publish First Results – Forcespinning™ Technology

Abstract:
Researchers at the University of Texas - Pan American have published the first results of their work utilizing Forcespinning™ Technology to fabricate polymeric nanofibers and metallic nanowires. The article, which appears in the November issue of the peer-reviewed journal Materials Today, was authored by Drs. Karen Lozano and Kamal Sarkar.

A Nanofiber Revolution: University Researchers Publish First Results – Forcespinning™ Technology

Edinburg, TX | Posted on November 9th, 2010

Taking the term revolution literally, Forcespinning™ is a patent pending technology that utilizes centrifugal force instead of hot air or an electrostatic charge to draw submicron fibers from liquid state materials. In the paper, the researchers outline their astounding results including average fiber diameters of 300 nanometers, homogenous fibers, and dramatic productivity increases. Furthermore, they demonstrate the amazing versatility of the technology by processing a broad range of materials from polyesters to biopolymers to pure metals.

"Nanofibers and nanowires have incredible properties and applications in aerospace, filtration, tissue engineering, drug delivery, and nonwovens," says Dr. Karen Lozano. She went on to say, "We found a very unique and simple way to process them that overcame many previous limitations, which enabled a broader range of materials, simple and repeatable results, greater control over fiber diameter, and unparalled productive capacity."

In 2010, Forcespinning™ received the Silver Award from The World's Best Technology Showcase and was recognized as a 2010 Innovation That Will Change the Way You Manufacture by the Society of Manufacturing Engineers. The technology has been licensed by the university to FibeRio Technology Corporation, a company that recently announced the launch of the Cyclone L-1000 Series, the first commercially available nanofiber production equipment that facilitates Forcespinning™.

For more information, please call FibeRio at 956-207-5448.

####

About FibeRio Technology Corporation
FibeRio was formed to make Forcespinning™ Technology, the next generation of nanofiber production equipment, commercially available for both research and development and high-volume industrial applications. Originally developed as an alternative to the electrospinning process of fabricating polymeric nanofibers, Forcespinning™ is so thoroughly innovative that it can also process metals, ceramics, carbon and conductive polymers in the nanoscale – all at commercial production levels. Forcespinning™ Technology utilizes centrifugal force rather than electrostatic force. Without electrostatic force, an entire new realm of possibilities opens up. FibeRio currently offers the Cyclone L-1000 Series nanofiber research and development systems. Subsequent products are being developed for commercial applications that will offer unparalleled levels of production capacity and substrate deposition.

For more information, please click here

Contacts:
Kial Gramley
Phone: 956-207-5448

Copyright © FibeRio Technology Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Possible Futures

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Tools

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Nano-magnets produce 3-dimensional images: Wide-view 3-dimensional holographic display composed of nano-magnetic pixels April 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic