Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene gets a Teflon makeover

Graphane crystal. This novel two-dimensional material is obtained from graphene (a monolayer of carbon atoms) by attaching hydrogen atoms (red) to each carbon atoms (blue) in the crystal.
Graphane crystal. This novel two-dimensional material is obtained from graphene (a monolayer of carbon atoms) by attaching hydrogen atoms (red) to each carbon atoms (blue) in the crystal.

Abstract:
University of Manchester scientists have created a new material which could replace or compete with Teflon in thousands of everyday applications

Graphene gets a Teflon makeover

UK | Posted on November 9th, 2010

Professor Andre Geim, who along with his colleague Professor Kostya Novoselov won the 2010 Nobel Prize for graphene - the world's thinnest material, has now modified it to make fluorographene - a one-molecule-thick material chemically similar to Teflon.

Fluorographene is fully-fluorinated graphene and is basically a two-dimensional version of Teflon, showing similar properties including chemical inertness and thermal stability.

The results are this week reported in the advanced online issue of the journal Small. The work is a large international effort and involved research groups from China, the Netherlands, Poland and Russia.

The team hope that fluorographene, which is a flat, crystal version of Teflon and is mechanically as strong as graphene, could be used as a thinner, lighter version of Teflon, but could also be in electronics, such as for new types of LED devices.

Graphene, a one-atom-thick material that demonstrates a huge range of unusual and unique properties, has been at the centre of attention since groundbreaking research carried out at The University of Manchester six years ago.

Its potential is almost endless - from ultrafast transistors just one atom thick to sensors that can detect just a single molecule of a toxic gas and even to replace carbon fibres in high performance materials that are used to build aircraft.

Professor Geim and his team have exploited a new perspective on graphene by considering it as a gigantic molecule that, like any other molecule, can be modified in chemical reactions.

Teflon is a fully-fluorinated chain of carbon atoms. These long molecules bound together make the polymer material that is used in a variety of applications including non-sticky cooking pans.

The Manchester team managed to attach fluorine to each carbon atom of graphene..

To get fluorographene, the Manchester researchers first obtained graphene as individual crystals and then fluorinated it by using atomic fluorine.

To demonstrate that it is possible to obtain fluorographene in industrial quantities, the researchers also fluorinated graphene powder and obtained fluorographene paper.

Fluorographene turned out to be a high-quality insulator which does not react with other chemicals and can sustain high temperatures even in air.

One of the most intense directions in graphene research has been to open a gap in graphene's electronic spectrum, that is, to make a semiconductor out of metallic graphene. This should allow many applications in electronics. Fluorographene is found to be a wide gap semiconductor and is optically transparent for visible light, unlike graphene that is a semimetal.

Professor Geim said: "Electronic quality of fluorographene has to be improved before speaking about applications in electronics but other applications are there up for grabs."

Rahul Nair, who led this research for the last two years and is a PhD student working with Professor Geim, added: "Properties of fluorographene are remarkably similar to those of Teflon but this is not a plastic.

"It is essentially a perfect one-molecule-thick crystal and, similar to its parent, fluorographene is also mechanically strong. This makes a big difference for possible applications.

"We plan to use fluorographene an ultra-thin tunnel barrier for development of light-emitting devices and diodes.

"More mundane uses can be everywhere Teflon is currently used, as an ultra-thin protective coating, or as a filler for composite materials if one needs to retain the mechanical strength of graphene but avoid any electrical conductivity or optical opacity of a composite".

Industrial scale production of fluorographene is not seen as a problem as it would involve following the same steps as mass production of graphene.

The Manchester researchers believe that the next important step is to make proof-of-concept devices and demonstrate various applications of fluorographene.

Professor Geim added: "There is no point in using it just as a substitute for Teflon. The mix of the incredible properties of graphene and Teflon is so inviting that you do not need to stretch your imagination to think of applications for the two-dimensional Teflon. The challenge is to exploit this uniqueness."

####

For more information, please click here

Contacts:
Daniel Cochlin
Media Relations
The University of Manchester
0161 275 8387

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Display technology/LEDs/SS Lighting/OLEDs

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Possible Futures

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Academic/Education

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Chip Technology

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Nanoelectronics

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Teri Odom and Richard Van Duyne Honored by Department of Defense: Each will receive $3 million over five years to conduct high-risk, high-payoff research March 31st, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Aerospace/Space

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Industrial

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Research partnerships

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project