Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab Scientists Generate Low-Cost, Hybrid Thermoelectrics

Using simple water-based chemistry to wrap a polymer that conducts electricity around a nanorod of tellurium, this composite nanoscale thermoelectric is easily spin cast or printed into a film.
Using simple water-based chemistry to wrap a polymer that conducts electricity around a nanorod of tellurium, this composite nanoscale thermoelectric is easily spin cast or printed into a film.

Abstract:
Although climate-controlled car seats don't spring to mind when you think of energy efficiency, the latest technology underpinning this luxury automobile feature is based on thermoelectrics—materials that convert electricity directly into heating or cooling. Conversely, thermoelectrics can also funnel excess heat from energy inefficient systems, such as car engines or power plants, by recovering this ‘waste heat' and turning it into electricity. As a result, these materials offer a potentially clean source of energy to reduce fuel consumption and CO2 emissions.

Berkeley Lab Scientists Generate Low-Cost, Hybrid Thermoelectrics

Berkeley, CA | Posted on November 9th, 2010

Currently, this thermal energy is converted with high-efficiency, expensive thermoelectric materials. In automotive exhaust systems, for example, solid-state thermoelectrics recover waste heat that can result in fuel savings of up to five percent, but their high cost bars them from being used in smaller-scale settings. Boosting these savings through lower-cost materials could make a significant impact in power generation for batteries or electronic components in computers. Now, Lawrence Berkeley National Laboratory (Berkeley Lab) scientists are tackling this challenge by "changing the budget for thermal energy management," said Jeff Urban, Deputy Director of the Inorganic Nanostructures Facility at the Molecular Foundry, a nanoscience user facility.

"Historically, high-efficiency thermoelectrics have required high-cost, materials-intensive processing," said Urban. "By engineering a hybrid of soft and hard materials using straightforward flask chemistry in water, we've developed a route that provides respectable efficiency with a low cost to production."

In their approach, Urban and colleagues constructed a nanoscale composite material by wrapping a polymer that conducts electricity around a nanorod of tellurium—a metal coupled with cadmium in today's most cost-effective solar cells. This composite material is easily spin cast or printed into a film from a water-based solution. Along with its ease of manufacture, this hybrid material also has a thermoelectric figure of merit thousands of times greater than either the polymer or nanorod alone—a crucial factor in boosting device performance.

"In recent years, we've seen tremendous gains in thermoelectric efficiency, but there is a need for low-cost, moderate efficiency materials that are easy to process and pattern over large areas," said Rachel Segalman, a faculty scientist at Berkeley Lab and professor of Chemical and Biomolecular Engineering at University of California, Berkeley. "We had a lot of intuition about what would work using polymers and nanocrystals, and will now explore materials space to optimize these systems and switch to more earth-abundant materials."

A paper reporting this research titled, "Water-processable polymer-nanocrystal hybrids for thermoelectrics," appears in Nano Letters and is available to subscribers online. Co-authoring the paper with Urban and Segalman were Kevin See, Joseph Feser, Cynthia Chen and Arun Majumdar.

Portions of this work at the Molecular Foundry were supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at www.lbl.gov.

For more information, please click here

Contacts:
Aditi Risbud

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project