Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab Scientists Generate Low-Cost, Hybrid Thermoelectrics

Using simple water-based chemistry to wrap a polymer that conducts electricity around a nanorod of tellurium, this composite nanoscale thermoelectric is easily spin cast or printed into a film.
Using simple water-based chemistry to wrap a polymer that conducts electricity around a nanorod of tellurium, this composite nanoscale thermoelectric is easily spin cast or printed into a film.

Abstract:
Although climate-controlled car seats don't spring to mind when you think of energy efficiency, the latest technology underpinning this luxury automobile feature is based on thermoelectrics—materials that convert electricity directly into heating or cooling. Conversely, thermoelectrics can also funnel excess heat from energy inefficient systems, such as car engines or power plants, by recovering this ‘waste heat' and turning it into electricity. As a result, these materials offer a potentially clean source of energy to reduce fuel consumption and CO2 emissions.

Berkeley Lab Scientists Generate Low-Cost, Hybrid Thermoelectrics

Berkeley, CA | Posted on November 9th, 2010

Currently, this thermal energy is converted with high-efficiency, expensive thermoelectric materials. In automotive exhaust systems, for example, solid-state thermoelectrics recover waste heat that can result in fuel savings of up to five percent, but their high cost bars them from being used in smaller-scale settings. Boosting these savings through lower-cost materials could make a significant impact in power generation for batteries or electronic components in computers. Now, Lawrence Berkeley National Laboratory (Berkeley Lab) scientists are tackling this challenge by "changing the budget for thermal energy management," said Jeff Urban, Deputy Director of the Inorganic Nanostructures Facility at the Molecular Foundry, a nanoscience user facility.

"Historically, high-efficiency thermoelectrics have required high-cost, materials-intensive processing," said Urban. "By engineering a hybrid of soft and hard materials using straightforward flask chemistry in water, we've developed a route that provides respectable efficiency with a low cost to production."

In their approach, Urban and colleagues constructed a nanoscale composite material by wrapping a polymer that conducts electricity around a nanorod of tellurium—a metal coupled with cadmium in today's most cost-effective solar cells. This composite material is easily spin cast or printed into a film from a water-based solution. Along with its ease of manufacture, this hybrid material also has a thermoelectric figure of merit thousands of times greater than either the polymer or nanorod alone—a crucial factor in boosting device performance.

"In recent years, we've seen tremendous gains in thermoelectric efficiency, but there is a need for low-cost, moderate efficiency materials that are easy to process and pattern over large areas," said Rachel Segalman, a faculty scientist at Berkeley Lab and professor of Chemical and Biomolecular Engineering at University of California, Berkeley. "We had a lot of intuition about what would work using polymers and nanocrystals, and will now explore materials space to optimize these systems and switch to more earth-abundant materials."

A paper reporting this research titled, "Water-processable polymer-nanocrystal hybrids for thermoelectrics," appears in Nano Letters and is available to subscribers online. Co-authoring the paper with Urban and Segalman were Kevin See, Joseph Feser, Cynthia Chen and Arun Majumdar.

Portions of this work at the Molecular Foundry were supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at www.lbl.gov.

For more information, please click here

Contacts:
Aditi Risbud

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Automotive/Transportation

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project