Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cell membranes behave like cornstarch and water

Raghuveer Parthasarathy, a professor of physics and member of the UO's Materials Science Institute and Institute of Molecular Biology
Raghuveer Parthasarathy, a professor of physics and member of the UO's Materials Science Institute and Institute of Molecular Biology

Abstract:
Mix two parts cornstarch and one part water. Swirl your fingers in it slowly and the mixture is a smoothly flowing liquid. Punch it quickly with your fist and you meet a rubbery solid -- so solid you can jump up and down on a vat of it.

It turns out that cell membranes — or, more precisely the two-molecule-thick lipid sheets that form the structural basis of all cellular membranes — behave the same way, say University of Oregon scientists.

Cell membranes behave like cornstarch and water

Eugene, OR | Posted on November 3rd, 2010

For decades, researchers have been aware that biological membranes are fluid, and that this fluidity is crucial to allowing the motions and interactions of proteins and other cell surface molecules. The new studies, however, reveal that this state is not the simple Newtonian fluidity of familiar liquids like water, but rather it is viscoelastic. At rest the mixture is very fluid, but when quickly perturbed, it bounces back like rubber.

The discovery is detailed Oct. 25 in the Early Edition of the Proceedings of the National Academy of Sciences, and it strikes down the notion that these biologically important membranes are Newtonian fluids that flow regardless of the stress they encounter.

"This changes our whole understanding of what lipid membranes are," said Raghuveer Parthasarathy, a professor of physics and member of the UO's Materials Science Institute and Institute of Molecular Biology. "We may need to rethink our understanding of how all sorts of the mechanical processes that occur in cell membranes work, like how proteins are pulled from one place to another, how cells respond to stretching and other forces, and how membrane-embedded proteins that serve as channels for chemical signals are able to open and close.

"A lot of these mechanical tasks go awry in various diseases for reasons that remain mysterious," he said. "Perhaps a deeper understanding of the mechanical environment that membranes provide will illuminate why biology functions, or fails to function, in the way it does."

In the project, freestanding membranes of lipids — fatty molecules that form the basis of all cell membranes — were built with lipid-anchored nanoparticles as tracers that could be observed under high-powered microscopes. Close analysis of the trajectories of these particles allowed researchers to deduce the fluid and elastic properties of the membranes under changing conditions.

Leading the experiments were Christopher W. Harland, who earned a doctorate in physics from the UO last summer and is now a postdoctoral researcher at the University of Chicago, and Miranda J. Bradley, then a visiting undergraduate student from Portland Community College and now at Portland State University. Bradley studied in Parthasarathy's lab as part of the UO's Undergraduate Catalytic Outreach & Research Experiences (UCORE) program.

The importance of membrane fluidity has been recognized for decades, but membranes' strange character as a viscoelastic material has gone unnoticed, said Parthasarathy, who is among UO scientists involved in the Oregon Nanoscience and Microtechnologies Institute (ONAMI). "In retrospect, we shouldn't be surprised. Nature uses viscoelasticity in lots of its other liquids, from mucus to tears. Now we've found that it harnesses viscoelasticity in lipid membranes as well."

The Alfred P. Sloan Foundation, Office of Naval Research through ONAMI and National Science Foundation supported the research.

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 63 leading public and private research institutions in the United States and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Media Contact:
Jim Barlow
director of science and research communications

541-346-3481

Source:
Raghuveer Parthasarathy
assistant professor of physics
541-346-2933

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Videos/Movies

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Engineers identify how to keep surfaces dry underwater: Research team is first to identify surface 'roughness' required to achieve amazing feat August 18th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Nanomedicine

Using DNA origami to build nanodevices of the future September 1st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Announcements

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Nanobiotechnology

Using DNA origami to build nanodevices of the future September 1st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic