Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Research on thin-film solar cells heats up at UC Santa Cruz

Sue Carter in her lab. Credit R. Jones.
Sue Carter in her lab. Credit R. Jones.

Abstract:
Sue Carter, a professor of physics at the University of California, Santa Cruz, is pursuing a variety of strategies to develop cheaper and more efficient solar cells. She was awarded five new grants this year totaling more than $1 million to fund her research on new materials and technologies for solar energy.

Research on thin-film solar cells heats up at UC Santa Cruz

Santa Cruz, CA | Posted on November 2nd, 2010

Carter's research focuses on lowering the cost of solar cells and reducing the energy "payback time"--how long it takes a solar cell to generate the amount of energy that was used to manufacture it. Her lab uses thin-film technologies and printable semiconductor materials that enable the production of solar cells using less material and less energy compared to standard manufacturing processes.

While a growing number of companies are now making thin-film solar cells, conventional silicon-based cells still account for the vast majority of photovoltaic systems in use today. Silicon is a cheap and abundant material, but getting the purity and crystalline structure needed for solar cells requires energy-intensive processing at very high temperatures. And silicon cells have to be thick, because silicon does not absorb light very well.

Thin-film solar cells use much less material than silicon cells and offer advantages such as light weight and the potential to deposit them on flexible substrates. Cadmium telluride (CdTe) is currently the leading thin-film material, used in solar cells produced by several companies. But tellurium is one of the rarest elements in the world, which could limit the long-term viability of CdTe cells in the solar energy market. Carter's lab has developed a procedure for making ultrathin CdTe solar cells using cheaper processing and only about 10 percent of the material needed to make standard CdTe cells.

"We do the processing under normal temperatures and pressures, so it uses a lot less energy than vacuum-based processing," Carter said. "And we were able to cut the thickness down from three microns to about 360 nanometers and still get good power efficiencies, so the amount of material you need is almost an order of magnitude less."

These results were reported in a recent paper in Applied Physics Letters (published online on June 15, 2010). Carter's ongoing research to extend this work is funded by a new grant from the California Energy Commission's Energy Innovations Small Grant Program. One of the goals is to deposit the ultrathin CdTe film on a cheap, flexible substrate to make the solar cells more portable, she said.

Carter's lab is also working to develop thin-film solar cells that use cheaper, more abundant materials than CdTe and the other leading thin-film material, copper indium gallium selenide (CIGS). The indium in CIGS cells is almost as rare an element as tellurium.

"If we want to scale up solar energy production to terawatt volumes, we need to use more abundant materials," Carter said.

Alternative thin-film materials being studied in Carter's lab include lead sulfide and copper sulfide. In another recent paper in Applied Physics Letters (published online on July 28, 2010), she and her co-workers reported high efficiency at low temperature in solar cells using lead sulfide and titanium dioxide nanoparticles (semiconductor crystals with dimensions of a few nanometers). This approach makes use of quantum properties of lead sulfide nanoparticles that could, in theory, enable solar cells to achieve much higher efficiencies than current solar technologies. Ongoing work in this area is funded by a National Science Foundation grant for a collaborative effort involving researchers at UCSC, UC Davis, and industry partners.

A separate NSF grant is funding Carter's research on copper-based materials for thin-film solar cells. This work is motivated by concerns about the toxicity of cadmium, lead, and other materials used in thin-film solar cells.

Finally, a Department of Energy grant and an industry grant from Abengoa Solar are funding Carter's work on luminescent solar concentrators. This technology can be used to capture sunlight over a large area and concentrate its energy on a smaller area of solar cells. Many types of dyes, polymers, and other materials can absorb sunlight and then fluoresce, re-emitting the light in a different wavelength. In a luminescent solar concentrator, the fluorescent material is incorporated into a thin, flat sheet. The re-emitted light is guided to the edge of the sheet by "total internal reflection," the same phenomenon that moves light pulses through fiber-optic cables. Solar cells arrayed along the edges convert the light to electricity.

"One of the nice things about this is that the material can be transparent--it looks like a darkened window. So you can integrate the luminescent solar concentrator and the solar cells into the windows of a building," Carter said. "It's also very cheap material, so you're using a less expensive material to collect the sunlight, and that reduces the amount of expensive solar cells you need."

Enclosing the film between plates of glass in a water- and oxygen-free environment can prevent degradation of the luminescent material over time, she said.

Carter's collaborators on these projects include Glenn Alers, adjunct professor of physics; Frank ("Bud") Bridges, professor of physics; industry partners at Abengoa, Add-Vision, and Solexant; and a large number of postdoctoral researchers and graduate and undergraduate students.

In addition to her lab on campus, Carter and Alers direct the Laboratory for Solar Energy and Renewable Fuels (SERF) at the Advanced Studies Laboratories, a UCSC-NASA partnership at NASA Ames Research Center at Moffett Field. "In the campus labs we do mostly basic science. The SERF lab provides a good setting for applied research and collaborations with industry and NASA partners," Carter said.

####

For more information, please click here

Contacts:
Tim Stephens
(831) 459-2495

Copyright © University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Thin films

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

3x improvement in wear resistance from Carbodeon nanodiamond-enhanced electroless nickel plating October 14th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

HZO Teams With Deutsche Telekom to Unveil the Waterproof Tolino Vision 2 eReader: The New HZO Protected eReader Ushers in a New Era of Waterproof Electronics, Providing a Seamless User Experience Without the Risk of Using Port Doors and Mechanical Seals October 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leaderís researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Announcements

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Energy

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

Solar/Photovoltaic

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Over 100 European experts meet in Barcelona thanks to a COST Action coordinated from ICN2: The ISOS-7 Summit discusses the future of organic photovoltaic devices October 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE