Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research on thin-film solar cells heats up at UC Santa Cruz

Sue Carter in her lab. Credit R. Jones.
Sue Carter in her lab. Credit R. Jones.

Abstract:
Sue Carter, a professor of physics at the University of California, Santa Cruz, is pursuing a variety of strategies to develop cheaper and more efficient solar cells. She was awarded five new grants this year totaling more than $1 million to fund her research on new materials and technologies for solar energy.

Research on thin-film solar cells heats up at UC Santa Cruz

Santa Cruz, CA | Posted on November 2nd, 2010

Carter's research focuses on lowering the cost of solar cells and reducing the energy "payback time"--how long it takes a solar cell to generate the amount of energy that was used to manufacture it. Her lab uses thin-film technologies and printable semiconductor materials that enable the production of solar cells using less material and less energy compared to standard manufacturing processes.

While a growing number of companies are now making thin-film solar cells, conventional silicon-based cells still account for the vast majority of photovoltaic systems in use today. Silicon is a cheap and abundant material, but getting the purity and crystalline structure needed for solar cells requires energy-intensive processing at very high temperatures. And silicon cells have to be thick, because silicon does not absorb light very well.

Thin-film solar cells use much less material than silicon cells and offer advantages such as light weight and the potential to deposit them on flexible substrates. Cadmium telluride (CdTe) is currently the leading thin-film material, used in solar cells produced by several companies. But tellurium is one of the rarest elements in the world, which could limit the long-term viability of CdTe cells in the solar energy market. Carter's lab has developed a procedure for making ultrathin CdTe solar cells using cheaper processing and only about 10 percent of the material needed to make standard CdTe cells.

"We do the processing under normal temperatures and pressures, so it uses a lot less energy than vacuum-based processing," Carter said. "And we were able to cut the thickness down from three microns to about 360 nanometers and still get good power efficiencies, so the amount of material you need is almost an order of magnitude less."

These results were reported in a recent paper in Applied Physics Letters (published online on June 15, 2010). Carter's ongoing research to extend this work is funded by a new grant from the California Energy Commission's Energy Innovations Small Grant Program. One of the goals is to deposit the ultrathin CdTe film on a cheap, flexible substrate to make the solar cells more portable, she said.

Carter's lab is also working to develop thin-film solar cells that use cheaper, more abundant materials than CdTe and the other leading thin-film material, copper indium gallium selenide (CIGS). The indium in CIGS cells is almost as rare an element as tellurium.

"If we want to scale up solar energy production to terawatt volumes, we need to use more abundant materials," Carter said.

Alternative thin-film materials being studied in Carter's lab include lead sulfide and copper sulfide. In another recent paper in Applied Physics Letters (published online on July 28, 2010), she and her co-workers reported high efficiency at low temperature in solar cells using lead sulfide and titanium dioxide nanoparticles (semiconductor crystals with dimensions of a few nanometers). This approach makes use of quantum properties of lead sulfide nanoparticles that could, in theory, enable solar cells to achieve much higher efficiencies than current solar technologies. Ongoing work in this area is funded by a National Science Foundation grant for a collaborative effort involving researchers at UCSC, UC Davis, and industry partners.

A separate NSF grant is funding Carter's research on copper-based materials for thin-film solar cells. This work is motivated by concerns about the toxicity of cadmium, lead, and other materials used in thin-film solar cells.

Finally, a Department of Energy grant and an industry grant from Abengoa Solar are funding Carter's work on luminescent solar concentrators. This technology can be used to capture sunlight over a large area and concentrate its energy on a smaller area of solar cells. Many types of dyes, polymers, and other materials can absorb sunlight and then fluoresce, re-emitting the light in a different wavelength. In a luminescent solar concentrator, the fluorescent material is incorporated into a thin, flat sheet. The re-emitted light is guided to the edge of the sheet by "total internal reflection," the same phenomenon that moves light pulses through fiber-optic cables. Solar cells arrayed along the edges convert the light to electricity.

"One of the nice things about this is that the material can be transparent--it looks like a darkened window. So you can integrate the luminescent solar concentrator and the solar cells into the windows of a building," Carter said. "It's also very cheap material, so you're using a less expensive material to collect the sunlight, and that reduces the amount of expensive solar cells you need."

Enclosing the film between plates of glass in a water- and oxygen-free environment can prevent degradation of the luminescent material over time, she said.

Carter's collaborators on these projects include Glenn Alers, adjunct professor of physics; Frank ("Bud") Bridges, professor of physics; industry partners at Abengoa, Add-Vision, and Solexant; and a large number of postdoctoral researchers and graduate and undergraduate students.

In addition to her lab on campus, Carter and Alers direct the Laboratory for Solar Energy and Renewable Fuels (SERF) at the Advanced Studies Laboratories, a UCSC-NASA partnership at NASA Ames Research Center at Moffett Field. "In the campus labs we do mostly basic science. The SERF lab provides a good setting for applied research and collaborations with industry and NASA partners," Carter said.

####

For more information, please click here

Contacts:
Tim Stephens
(831) 459-2495

Copyright © University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Thin films

ANU invention to inspire new night-vision specs December 7th, 2016

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project