Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Organic Solvent System May Improve Recycling of Catalysts

Organic aqua regia; gold background - Researcher Wei Lin holds a beaker containing a gold/organic aqua regia solution. The image on the monitor shows gold recovered from the solution using calcinations. (Credit: Gary Meek)
Organic aqua regia; gold background - Researcher Wei Lin holds a beaker containing a gold/organic aqua regia solution. The image on the monitor shows gold recovered from the solution using calcinations. (Credit: Gary Meek)

Abstract:
Researchers at the Georgia Institute of Technology have developed a new organic solvent process that may help address the problem -- and open up new possibilities for using these metals in cancer therapeutics, microelectronics and other applications.

Organic Solvent System May Improve Recycling of Catalysts

Atlanta, GA | Posted on November 2nd, 2010

Noble metals such as platinum and palladium are becoming increasingly important because of growth in environmentally friendly applications such as fuel cells and pollution control catalysts. But the world has limited quantities of these materials, meaning manufacturers will have to rely on efficient recycling processes to help meet the demand.

Existing recycling processes use a combination of two inorganic acids known as "aqua regia" to dissolve noble metals, a class of materials that includes platinum, palladium, gold and silver. But because the metals are often dissolved together, impurities introduced in the recycling process may harm the efficiency of catalysts produced from the recycled materials. Now, researchers at the Georgia Institute of Technology have developed a new organic solvent process that may help address the problem -- and open up new possibilities for using these metals in cancer therapeutics, microelectronics and other applications.

The new Georgia Tech solvent system uses a combination of two chemicals -- thionyl chloride and a variety of organic reagents such as pyridine, N,N-dimethylformamide (DMF), pyrimidine or imidazole. The concentrations can be adjusted to preferentially dissolve gold or palladium, and more importantly, no combination of the organic chemicals dissolves platinum. This ability to preferentially dissolve noble metals creates a customized system that provides a high level of control over the process.

"We need to be able to selectively dissolve these noble metals to ensure their purity in a variety of important applications," said C.P. Wong, a Regents professor in the Georgia Tech School of Materials Science and Engineering. "Though we don't fully understand how it works yet, we believe this system opens a lot of new possibilities for using these metals."

A paper describing the research was published recently in the journal Angewandte Chemie.

Catalyst systems that make use of more than one metal, such as palladium with a gold core, are becoming more widely used in industrial processes. To recycle those, the new solvent system -- dubbed "organic aqua regia" -- could first use a combination of thionyl chloride and DMF to dissolve out the gold, leaving hollow palladium spheres. Then the palladium spheres could be dissolved using a different combination.

So far, the researchers have demonstrated that the solvent system can selectively dissolve gold and palladium from a mixture of gold, palladium and platinum. They have also used it to remove gold from a mixture of gold and palladium.

Beyond recycling, the new solvent system could also provide new ways of producing nanometer-scale cancer chemotherapy agents that involve these metals. And the new solvent approach could have important implications for the electronics industry, which uses noble metals that must often be removed after specific processing steps. Beyond selectivity, the new approach also offers other advantages for electronics manufacturing -- no potentially harmful contamination is left behind and processing is done under mild conditions.

"In semiconductor production, people want to avoid having a metal catalyst remaining in devices, but in many cases, they cannot use existing water-based processes because these can damage the semiconductor oxides and introduce contamination with free ions in the aqueous solution," explained Wei Lin, a graduate research assistant in Wong's laboratory. "Use of this organic system avoids the problem of moisture."

Use of the selective process could also facilitate recycling of noble metals used in electronics manufacturing. Wire-bonding, metallization and interconnect processes currently use noble metals.

Noble metals are also the foundation for widely-used chemotherapy agents, but the chemistry of synthesizing them involves a complex process of surfactants and precursors. Wong believes the new Georgia Tech solvent process may allow creation of novel compounds that could offer improved therapeutic effects.

"We hope this will open up some new ways of making these important pharmaceutical compounds as well as novel gold and palladium catalytic systems," he said.

Lin discovered the new solvent system by accident in 2007 while using thionyl chloride in an unrelated project that involved bonding carbon nanotubes to a gold substrate. "I left my sample in the solution and went to lunch," he recalled. "Then I received a couple of phone calls and the sample stayed in the solution for too long. When I got it out, the gold was gone."

The researchers were intrigued by the discovery and pursued an explanation as they had time over the past three years. They tested other reagents mixed with the thionyl chloride, and learned the proportions necessary for selective dissolution of palladium and gold. They worked with other researchers at Georgia Tech, including nanotechnology pioneer Zhong Lin Wang, to develop a fundamental understanding of the process -- research that is continuing.

The chemicals used by the Georgia Tech research team are well known in organic chemistry, and are used today in polymer synthesis. Beyond their selectivity, the new solvent system is more environmentally friendly than traditional aqua regia -- which is a combination of concentrated nitric and hydrochloric acids -- and can operate at mild conditions. Potential disadvantages compared to traditional aqua regia include higher costs and slower dissolution rates.

"We have opened up a new approach to noble metals using organic chemistry," Wong added. "We don't yet thoroughly understand the mechanism by which this works, but we hope to develop a more complete understanding that may lead to additional applications."

In addition to those already mentioned, the research team included Rong-Wei Zhang, Seung-Soon Jang and Jung-Il Hong, all from the School of Materials Science and Engineering at Georgia Tech.

####

For more information, please click here

Contacts:
Media Relations Assistance
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364


Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Chemistry

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Fun with Lego (molecules) January 28th, 2016

Possible Futures

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Using mathematics to improve human health February 3rd, 2016

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Nanomedicine

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Nanoparticles Make Fertility Possible during Consumption of Anticancer Drugs February 4th, 2016

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Environment

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Herbal Extracts Applied to Synthesize Titanium Dioxide Nanoparticles January 28th, 2016

FLEXcon shares insights on developments and safety guidelines in nanotechnology: FLEXcon hosted New England Nanotechnology Association event, discussing latest industry activities and innovations January 25th, 2016

Highly efficient heavy metal ions filter January 25th, 2016

Fuel Cells

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Fuel cell advance: Research team reports success with low-cost nickel-based catalyst January 18th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

Nanobiotechnology

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

Nanoparticles Make Fertility Possible during Consumption of Anticancer Drugs February 4th, 2016

Using mathematics to improve human health February 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic