Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Organic Solvent System May Improve Recycling of Catalysts

Organic aqua regia; gold background - Researcher Wei Lin holds a beaker containing a gold/organic aqua regia solution. The image on the monitor shows gold recovered from the solution using calcinations. (Credit: Gary Meek)
Organic aqua regia; gold background - Researcher Wei Lin holds a beaker containing a gold/organic aqua regia solution. The image on the monitor shows gold recovered from the solution using calcinations. (Credit: Gary Meek)

Abstract:
Researchers at the Georgia Institute of Technology have developed a new organic solvent process that may help address the problem -- and open up new possibilities for using these metals in cancer therapeutics, microelectronics and other applications.

Organic Solvent System May Improve Recycling of Catalysts

Atlanta, GA | Posted on November 2nd, 2010

Noble metals such as platinum and palladium are becoming increasingly important because of growth in environmentally friendly applications such as fuel cells and pollution control catalysts. But the world has limited quantities of these materials, meaning manufacturers will have to rely on efficient recycling processes to help meet the demand.

Existing recycling processes use a combination of two inorganic acids known as "aqua regia" to dissolve noble metals, a class of materials that includes platinum, palladium, gold and silver. But because the metals are often dissolved together, impurities introduced in the recycling process may harm the efficiency of catalysts produced from the recycled materials. Now, researchers at the Georgia Institute of Technology have developed a new organic solvent process that may help address the problem -- and open up new possibilities for using these metals in cancer therapeutics, microelectronics and other applications.

The new Georgia Tech solvent system uses a combination of two chemicals -- thionyl chloride and a variety of organic reagents such as pyridine, N,N-dimethylformamide (DMF), pyrimidine or imidazole. The concentrations can be adjusted to preferentially dissolve gold or palladium, and more importantly, no combination of the organic chemicals dissolves platinum. This ability to preferentially dissolve noble metals creates a customized system that provides a high level of control over the process.

"We need to be able to selectively dissolve these noble metals to ensure their purity in a variety of important applications," said C.P. Wong, a Regents professor in the Georgia Tech School of Materials Science and Engineering. "Though we don't fully understand how it works yet, we believe this system opens a lot of new possibilities for using these metals."

A paper describing the research was published recently in the journal Angewandte Chemie.

Catalyst systems that make use of more than one metal, such as palladium with a gold core, are becoming more widely used in industrial processes. To recycle those, the new solvent system -- dubbed "organic aqua regia" -- could first use a combination of thionyl chloride and DMF to dissolve out the gold, leaving hollow palladium spheres. Then the palladium spheres could be dissolved using a different combination.

So far, the researchers have demonstrated that the solvent system can selectively dissolve gold and palladium from a mixture of gold, palladium and platinum. They have also used it to remove gold from a mixture of gold and palladium.

Beyond recycling, the new solvent system could also provide new ways of producing nanometer-scale cancer chemotherapy agents that involve these metals. And the new solvent approach could have important implications for the electronics industry, which uses noble metals that must often be removed after specific processing steps. Beyond selectivity, the new approach also offers other advantages for electronics manufacturing -- no potentially harmful contamination is left behind and processing is done under mild conditions.

"In semiconductor production, people want to avoid having a metal catalyst remaining in devices, but in many cases, they cannot use existing water-based processes because these can damage the semiconductor oxides and introduce contamination with free ions in the aqueous solution," explained Wei Lin, a graduate research assistant in Wong's laboratory. "Use of this organic system avoids the problem of moisture."

Use of the selective process could also facilitate recycling of noble metals used in electronics manufacturing. Wire-bonding, metallization and interconnect processes currently use noble metals.

Noble metals are also the foundation for widely-used chemotherapy agents, but the chemistry of synthesizing them involves a complex process of surfactants and precursors. Wong believes the new Georgia Tech solvent process may allow creation of novel compounds that could offer improved therapeutic effects.

"We hope this will open up some new ways of making these important pharmaceutical compounds as well as novel gold and palladium catalytic systems," he said.

Lin discovered the new solvent system by accident in 2007 while using thionyl chloride in an unrelated project that involved bonding carbon nanotubes to a gold substrate. "I left my sample in the solution and went to lunch," he recalled. "Then I received a couple of phone calls and the sample stayed in the solution for too long. When I got it out, the gold was gone."

The researchers were intrigued by the discovery and pursued an explanation as they had time over the past three years. They tested other reagents mixed with the thionyl chloride, and learned the proportions necessary for selective dissolution of palladium and gold. They worked with other researchers at Georgia Tech, including nanotechnology pioneer Zhong Lin Wang, to develop a fundamental understanding of the process -- research that is continuing.

The chemicals used by the Georgia Tech research team are well known in organic chemistry, and are used today in polymer synthesis. Beyond their selectivity, the new solvent system is more environmentally friendly than traditional aqua regia -- which is a combination of concentrated nitric and hydrochloric acids -- and can operate at mild conditions. Potential disadvantages compared to traditional aqua regia include higher costs and slower dissolution rates.

"We have opened up a new approach to noble metals using organic chemistry," Wong added. "We don't yet thoroughly understand the mechanism by which this works, but we hope to develop a more complete understanding that may lead to additional applications."

In addition to those already mentioned, the research team included Rong-Wei Zhang, Seung-Soon Jang and Jung-Il Hong, all from the School of Materials Science and Engineering at Georgia Tech.

####

For more information, please click here

Contacts:
Media Relations Assistance
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364


Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Nanomedicine

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Discoveries

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Announcements

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Environment

Successful boron-doping of graphene nanoribbon August 27th, 2015

Iranian Scientists Utilize Nanomembranes to Purify Wastewater of Olive Oil Plants August 20th, 2015

'Diamonds from the sky' approach turns CO2 into valuable products August 19th, 2015

Sonocatalysts Able to Purify Organic Pollutants of Wastewater August 19th, 2015

Fuel Cells

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

New spectroscopy technique provides unprecedented insights about the reactions powering fuel cells Nanotech-enabled chip developed at UCLA can analyze chemical reactions more accurately than large machines August 12th, 2015

Pouring fire on fuels at the nanoscale August 9th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Nanobiotechnology

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic