Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Organic Solvent System May Improve Recycling of Catalysts

Organic aqua regia; gold background - Researcher Wei Lin holds a beaker containing a gold/organic aqua regia solution. The image on the monitor shows gold recovered from the solution using calcinations. (Credit: Gary Meek)
Organic aqua regia; gold background - Researcher Wei Lin holds a beaker containing a gold/organic aqua regia solution. The image on the monitor shows gold recovered from the solution using calcinations. (Credit: Gary Meek)

Abstract:
Researchers at the Georgia Institute of Technology have developed a new organic solvent process that may help address the problem -- and open up new possibilities for using these metals in cancer therapeutics, microelectronics and other applications.

Organic Solvent System May Improve Recycling of Catalysts

Atlanta, GA | Posted on November 2nd, 2010

Noble metals such as platinum and palladium are becoming increasingly important because of growth in environmentally friendly applications such as fuel cells and pollution control catalysts. But the world has limited quantities of these materials, meaning manufacturers will have to rely on efficient recycling processes to help meet the demand.

Existing recycling processes use a combination of two inorganic acids known as "aqua regia" to dissolve noble metals, a class of materials that includes platinum, palladium, gold and silver. But because the metals are often dissolved together, impurities introduced in the recycling process may harm the efficiency of catalysts produced from the recycled materials. Now, researchers at the Georgia Institute of Technology have developed a new organic solvent process that may help address the problem -- and open up new possibilities for using these metals in cancer therapeutics, microelectronics and other applications.

The new Georgia Tech solvent system uses a combination of two chemicals -- thionyl chloride and a variety of organic reagents such as pyridine, N,N-dimethylformamide (DMF), pyrimidine or imidazole. The concentrations can be adjusted to preferentially dissolve gold or palladium, and more importantly, no combination of the organic chemicals dissolves platinum. This ability to preferentially dissolve noble metals creates a customized system that provides a high level of control over the process.

"We need to be able to selectively dissolve these noble metals to ensure their purity in a variety of important applications," said C.P. Wong, a Regents professor in the Georgia Tech School of Materials Science and Engineering. "Though we don't fully understand how it works yet, we believe this system opens a lot of new possibilities for using these metals."

A paper describing the research was published recently in the journal Angewandte Chemie.

Catalyst systems that make use of more than one metal, such as palladium with a gold core, are becoming more widely used in industrial processes. To recycle those, the new solvent system -- dubbed "organic aqua regia" -- could first use a combination of thionyl chloride and DMF to dissolve out the gold, leaving hollow palladium spheres. Then the palladium spheres could be dissolved using a different combination.

So far, the researchers have demonstrated that the solvent system can selectively dissolve gold and palladium from a mixture of gold, palladium and platinum. They have also used it to remove gold from a mixture of gold and palladium.

Beyond recycling, the new solvent system could also provide new ways of producing nanometer-scale cancer chemotherapy agents that involve these metals. And the new solvent approach could have important implications for the electronics industry, which uses noble metals that must often be removed after specific processing steps. Beyond selectivity, the new approach also offers other advantages for electronics manufacturing -- no potentially harmful contamination is left behind and processing is done under mild conditions.

"In semiconductor production, people want to avoid having a metal catalyst remaining in devices, but in many cases, they cannot use existing water-based processes because these can damage the semiconductor oxides and introduce contamination with free ions in the aqueous solution," explained Wei Lin, a graduate research assistant in Wong's laboratory. "Use of this organic system avoids the problem of moisture."

Use of the selective process could also facilitate recycling of noble metals used in electronics manufacturing. Wire-bonding, metallization and interconnect processes currently use noble metals.

Noble metals are also the foundation for widely-used chemotherapy agents, but the chemistry of synthesizing them involves a complex process of surfactants and precursors. Wong believes the new Georgia Tech solvent process may allow creation of novel compounds that could offer improved therapeutic effects.

"We hope this will open up some new ways of making these important pharmaceutical compounds as well as novel gold and palladium catalytic systems," he said.

Lin discovered the new solvent system by accident in 2007 while using thionyl chloride in an unrelated project that involved bonding carbon nanotubes to a gold substrate. "I left my sample in the solution and went to lunch," he recalled. "Then I received a couple of phone calls and the sample stayed in the solution for too long. When I got it out, the gold was gone."

The researchers were intrigued by the discovery and pursued an explanation as they had time over the past three years. They tested other reagents mixed with the thionyl chloride, and learned the proportions necessary for selective dissolution of palladium and gold. They worked with other researchers at Georgia Tech, including nanotechnology pioneer Zhong Lin Wang, to develop a fundamental understanding of the process -- research that is continuing.

The chemicals used by the Georgia Tech research team are well known in organic chemistry, and are used today in polymer synthesis. Beyond their selectivity, the new solvent system is more environmentally friendly than traditional aqua regia -- which is a combination of concentrated nitric and hydrochloric acids -- and can operate at mild conditions. Potential disadvantages compared to traditional aqua regia include higher costs and slower dissolution rates.

"We have opened up a new approach to noble metals using organic chemistry," Wong added. "We don't yet thoroughly understand the mechanism by which this works, but we hope to develop a more complete understanding that may lead to additional applications."

In addition to those already mentioned, the research team included Rong-Wei Zhang, Seung-Soon Jang and Jung-Il Hong, all from the School of Materials Science and Engineering at Georgia Tech.

####

For more information, please click here

Contacts:
Media Relations Assistance
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364


Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Chemistry

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Nanotechnology Used to Produce Ceramic Membrane with High Thermal Stability January 19th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Nanomedicine

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Nanoliposomes Help Efforts to Cure Bacterial Infections January 27th, 2015

Discoveries

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Announcements

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Environment

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Fuel Cells

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Nanobiotechnology

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE