Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Energy saving devices

Abstract:
Thanks to the Steeper project conducted by EPFL, electronic devices should in future consume 10 times less energy when functioning, and almost nothing when in standby mode.

Energy saving devices

EU | Posted on October 31st, 2010

From mobile telephones to supercomputers, and including laptops and television sets, the number of electronic devices is growing alarmingly together and, in parallel, their energy consumption. To respond to this trend, a large-scale initiative involving several major research institutions from the academic world and industry, and led by EPFL, has been launched. Nicknamed STEEPER, this project aims to cut down by a factor of 10 the energy consumption of these devices when they are functioning, and to virtually eliminate any energy consumption when they are in passive or standby mode.

With support from the 7th Framework Programme of the European Commission (FP7), scientists will be able to explore innovative modules on the nanometer scale for electronic chips, to bring down their operating voltage to less than 0.5 volts; this means lowering their electricity consumption by approximately 10-fold.

By reducing power consumption, STEEPER is taking a first step towards the "zero-watt" PC - "the Holy Grail of electronics", as Adrian M. Ionescu, Professor at the EPFL Nanolab and project coordinator, calls it. The long-term objective of this scientist is a form of electronics that is virtually autonomous, taking its energy from external phenomena such as solar, thermal or electromagnetic sources. This ambitious project, called NanoPCo, is scheduled for submission to Brussels, as a candidate for the research program FET Flagship.

Energy waste, the biggest challenge

"Energy waste is about to become the biggest challenge in electronics today, and in particular in the computer industry." This is the conclusion of Dr Heike Riel, researcher in charge of the nanoelectronic group at IBM Research in Zurich, and also involved in the project.

The development of innovative devices, such as steep slope transistors (hence the project name) can enable a much shorter transition between the "off" and "on" modes than is possible with the current 60mV/decade limit of metal-oxide-semiconductor, field-effect transistors (MOSFETs) at room temperature.

####

For more information, please click here

Copyright © EPFL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Alliances/Trade associations/Partnerships/Distributorships

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

Technical partnership at the top Oxford Instruments and Zurich Instruments announce a technical collaboration for low temperature physics January 7th, 2016

Research partnerships

Chemical cages: New technique advances synthetic biology February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic