Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Advance could change modern electronics

This image of an asymmetric MIM diode reflects a major advance in materials science that could lead to less costly and higher speed electronic products. (Image courtesy of Oregon State University)
This image of an asymmetric MIM diode reflects a major advance in materials science that could lead to less costly and higher speed electronic products. (Image courtesy of Oregon State University)

Abstract:
Researchers at Oregon State University have solved a quest in fundamental material science that has eluded scientists since the 1960s, and could form the basis of a new approach to electronics.

Advance could change modern electronics

Corvallis, OR | Posted on October 30th, 2010

The discovery, just reported online in the professional journal Advanced Materials, outlines the creation for the first time of a high-performance "metal-insulator-metal" diode.

"Researchers have been trying to do this for decades, until now without success," said Douglas Keszler, a distinguished professor of chemistry at OSU and one of the nation's leading material science researchers. "Diodes made previously with other approaches always had poor yield and performance.

"This is a fundamental change in the way you could produce electronic products, at high speed on a huge scale at very low cost, even less than with conventional methods," Keszler said. "It's a basic way to eliminate the current speed limitations of electrons that have to move through materials."

A patent has been applied for on the new technology, university officials say. New companies, industries and high-tech jobs may ultimately emerge from this advance, they say.

The research was done in the Center for Green Materials Chemistry, and has been supported by the National Science Foundation, the Army Research Laboratory and the Oregon Nanoscience and Microtechnologies Institute.

Conventional electronics made with silicon-based materials work with transistors that help control the flow of electrons. Although fast and comparatively inexpensive, this approach is still limited by the speed with which electrons can move through these materials. And with the advent of ever-faster computers and more sophisticated products such as liquid crystal displays, current technologies are nearing the limit of what they can do, experts say.

By contrast, a metal-insulator-metal, or MIM diode can be used to perform some of the same functions, but in a fundamentally different way. In this system, the device is like a sandwich, with the insulator in the middle and two layers of metal above and below it. In order to function, the electron doesn't so much move through the materials as it "tunnels" through the insulator - almost instantaneously appearing on the other side.

"When they first started to develop more sophisticated materials for the display industry, they knew this type of MIM diode was what they needed, but they couldn't make it work," Keszler said. "Now we can, and it could probably be used with a range of metals that are inexpensive and easily available, like copper, nickel or aluminum. It's also much simpler, less costly and easier to fabricate."

The findings were made by researchers in the OSU Department of Chemistry; School of Electrical Engineering and Computer Science; and School of Mechanical, Industrial and Manufacturing Engineering.

In the new study, the OSU scientists and engineers describe use of an "amorphous metal contact" as a technology that solves problems that previously plagued MIM diodes. The OSU diodes were made at relatively low temperatures with techniques that would lend themselves to manufacture of devices on a variety of substrates over large areas.

OSU researchers have been leaders in a number of important material science advances in recent years, including the field of transparent electronics. University scientists will do some initial work with the new technology in electronic displays, but many applications are possible, they say.

High speed computers and electronics that don't depend on transistors are possibilities. Also on the horizon are "energy harvesting" technologies such as the nighttime capture of re-radiated solar energy, a way to produce energy from the Earth as it cools during the night.

"For a long time, everyone has wanted something that takes us beyond silicon," Keszler said. "This could be a way to simply print electronics on a huge size scale even less expensively than we can now. And when the products begin to emerge the increase in speed of operation could be enormous."

####

About Oregon State University
OSU is one of only two U.S. universities designated a land-, sea-, space- and sun-grant institution. OSU is also Oregon’s only university designated in the Carnegie Foundation’s top tier for research institutions, garnering more than 60 percent of the total federal and private research funding in the Oregon University System. Its nearly 24,000 students come from all 50 states and more than 90 countries. OSU programs touch every county within Oregon, and its faculty teach and conduct research on issues of national and global importance.

For more information, please click here

Contacts:
Douglas Keszler
541-737-6736


John Wager
541-737-2994


John Conley
541-737-9874

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Materials/Metamaterials

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE