Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study of behaviour of semiconductor crystals of size less than 100 nanometres

Abstract:
The PhD thesis by Carlos Echeverría Arrondo, Doctor in Physics from the Public University of Navarre and entitled "On doped semiconductor quantum dots and magnetic nanowires", studied the behaviour and properties of nanometric-scale semiconductor crystals.

Study of behaviour of semiconductor crystals of size less than 100 nanometres

Spain | Posted on October 29th, 2010

The thesis explains in a theoretical manner, the properties of doped quantum points (with the presence of impurities) and of magnetic nanowires. Notable amongst the main conclusions was that the electronic properties of the nanocrystals with magnetic impurities depend on where they are located. It is possible that the magnetic properties of the quantum points change drastically in terms of size i.e. reducing their size while light is also capable of modifying the magnetism of the nanocrystals doped with manganese. So far, unknown crystalline geometry was also discovered which has low nanowires dimensions.

"The study of the nanometric structures is important in their physical behaviour which , differ from macroscopic solids to which we are accustomed", pointed out the researcher. Given their low dimensionality, the properties of nanocrystals and nanowires are often surprising and, at the same time, promising. This is true in respect to the development of new devices for example, nanomagnetism and optoelectronics. These two fields are dealt with in this PhD thesis". The theoretical study of nanostructures acts, on the one hand, to explain phenomena already observed experimentally and, on the other, to provide clues to the experimental physics involved with the new properties which will be of great interest to study as well as in regard to the results anticipated".

In respect to the possibility of manipulating the spin of a quantum point using light, "this result shows us, for example, that these nanocrystals will act as bits of information or devices carrying out logical operations or for systems for high-capacity storage. These nanoparticles could even operate for quantum computation, anticipating fantastic calculation speeds, unimaginable today".

The interest aroused by nanoscience and nanotechnology spurred Dr Echeverría was to study the behaviour of semiconductor crystals when their size is reduced to less than one hundred nanometres (a nanometre is a millionth part of a millimetre). "The possibilities of nanoscience and nanotechnology are wide ranging", he pointed out. "Magnetic properties at these dimensions can change drastically when the size of the particles is reduced and, in our investigation, we have shown that light is also capable of modifying the magnetism of nanocrystals".

He explained, "when quantum points or nanoparticles are involved, we are talking about nanocrystals of "zero" dimensions, while those of one dimension are known as nanowires. Thus, the properties of quantum points and nanowires not only depend on nanometric size but also on their shape and the presence of impurities".

For more information: www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2946&hizk=I

####

For more information, please click here

Contacts:
Amaia Portugal
Elhuyar Foundation
Zelai Haundi 3, Osinalde Industrialdea
20170 Usurbil
Spain

Tel: +34 943 363040
Fax: +34 943 363144

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Possible Futures

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Quantum Dots/Rods

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Photonics/Optics/Lasers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic