Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Protein Shows How Plants Keep Their Mouths Shut

The bacterial trimer (a compound of three macromolecules) studied by the researchers
The bacterial trimer (a compound of three macromolecules) studied by the researchers

Abstract:
Findings could help researchers devise solutions to plant shutdown in face of rising carbon dioxide, ozone

Protein Shows How Plants Keep Their Mouths Shut

Upton, NY | Posted on October 28th, 2010

Using intense beams of x-rays at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, researchers have uncovered the atomic structure of a protein responsible for closing the "mouths," or stomata, of plants. These molecular photographs could help scientists understand how plants will respond to environmental changes facing our planet, such as drought and escalating levels of carbon dioxide and ozone. The study, led by researchers at Columbia University and the New York Structural Biology Center, is published in the October 28, 2010, issue of the journal Nature.

Plants "eat" and "breathe" through their stomata — tiny pores that pattern their leaves. When the sun is out, these small holes pull in carbon dioxide for energy generation through photosynthesis, and expel oxygen and water vapor. At night, to conserve moisture, the stomata are closed by a pair of kidney-shaped guard cells — the closest structure a plant has to muscle.

But darkness isn't the only signal that calls for guard cells to take action. Stomata also will seal up in response to high carbon dioxide levels, ozone, low humidity, and drought. In this study, researchers searched for details about the protein that starts the molecular chain reaction leading to stomata closure.

"Our work falls in the middle of an important discussion about how plants respond to environmental factors caused by global warming," said Columbia University scientist Wayne Hendrickson, who also is the Chief Life Scientist in Brookhaven's Photon Sciences Directorate. "Once we know this molecule intimately, we have a better chance of engineering solutions to help plants cope with pressures from environmental problems."

The protein in question is an anion channel, which moves negatively charged atoms (in this case, chloride) across the cell membrane to reduce the plant's water pressure. Low pressure causes the guard cells to go limp, and subsequently, the stomata to close.

Coincidentally, around the same time that this protein was discovered in plants, the Columbia-led team solved the structure of one of its close bacterial family members at Brookhaven's National Synchrotron Light Source (NSLS).

At NSLS, researchers bombarded the bacterial protein with bright beams of x-rays and observed, via detectors and computers, how the light was diffracted from the atoms. They then analyzed these diffraction patterns to yield a 3-D snapshot of the protein's structure.

Although membrane proteins are notoriously difficult to characterize, the scientists ended up with a "spectacular" result, Hendrickson said. But the researchers were even more excited to learn about their protein's plant relative, which, up to that point, had an elusive structure.

"As soon as we learned about this link, we set out to follow up on the previous work done in the field and make a hypothesis about how the thing actually works," Hendrickson said.

Using the bacterial protein as a model for the plant version, and doing experiments on the plant protein itself, the scientists discovered the anion channel's "on" switch. This channel is typically in a very strained conformation that prevents anions from passing through it. But when phosphate attaches to the channel, its structure shifts and opens, allowing anions to freely flow. As a result, the water pressure drops and the stomata close.

"If we didn't have such high-resolution data, we wouldn't be able to tell if this was a mistake or part of the real structure. We wouldn't have been able to do this without the synchrotron," said Hendrickson. He added that this type of research will be even further advanced at Brookhaven's National Synchrotron Light Source II (NSLS-II), a facility currently under construction that will produce x-ray beams 10,000 times brighter and with much higher resolution than those at NSLS.

This study was supported in part by the National Institute of General Medical Sciences Protein Structure Initiative within the National Institutes of Heath and by the Howard Hughes Medical Institute. Data were collected from NSLS beamline X4A, which is funded by the New York Structural Biology Center. NSLS is supported by the DOE Office of Science.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Announcements

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Food/Agriculture/Supplements

Iran Unveils 5 Home-Made Knowledge-Based Products August 25th, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Environment

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE