Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles Deliver Combination Chemotherapy Directly to Prostate Cancer Cells

Abstract:
In recent years, studies have shown that for many types of cancer, combination drug therapy is more effective than single drugs. However, it is usually difficult to get the right amount of each drug to the tumor. Now, researchers at the Massachusetts Institute of Technology (MIT) and Brigham and Women's Hospital have developed a nanoparticle that can deliver precise doses of two or more drugs to prostate cancer cells. Such particles, say the researchers, could improve the effectiveness of chemotherapy while minimizing the side effects normally seen with these drugs.

Nanoparticles Deliver Combination Chemotherapy Directly to Prostate Cancer Cells

Bethesda, MD | Posted on October 27th, 2010

In a study appearing in the Proceedings of the National Academy of Sciences, a team of investigators led by Omid Farokhzad and Robert Langer, both members of the MIT-Harvard Center for Cancer Nanotechnology Excellence, demonstrated the utility of their new particle by using it to deliver cisplatin and docetaxel, two drugs commonly used to treat many different types of cancer.

To build their nanoparticles, the researchers developed a new strategy that allowed them to incorporate drugs with very different physical properties, which had been impossible with previous drug-delivering nanoparticles. In earlier generations of nanoparticles, drug molecules were encapsulated in a polymer coating. Using those particles, hydrophobic (water-repelling) drugs, such as docetaxel, and hydrophilic (water-attracting) drugs, such as cisplatin, can't be carried together, nor can drugs with different charges. "With the old way, you can only do it if the two drugs are physically and chemically similar," said Dr. Farokhzad. "With this way, you can put in drugs that are relatively different from each other."

With the researchers' new technique, called "drug-polymer blending," drug molecules are hung like pendants from individual units of the polymer before the units are assembled into a polymer nanoparticle. This approach allows the researchers to precisely control the ratio of drugs loaded into the particle and to control the rate at which each drug will be released once it enters a tumor cell.

For this study, once the investigators loaded the drugs into the nanoparticle, the researchers added a tag that binds to a molecule called PSMA that is located on the surfaces of most prostate tumor cells. This tag allows the nanoparticles to go directly to their target, bypassing healthy tissues and potentially reducing the side effects caused by most chemotherapy drugs.

The researchers have filed for a patent on the polymer-blending fabrication technique and are now testing the drug-delivering particles in animals. Once they gather enough animal data, which could take a few years, they hope to begin clinical trials.

This work, which is detailed in a paper titled, "Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website.

View abstract at www.pnas.org/content/107/42/17939

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Self Assembly

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Nanomedicine

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Announcements

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Nanobiotechnology

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Rafts on the cell membrane: Researchers from TU Wien (Vienna) shed light on a big secret of cell membranes: The 'lipid rafts', which have been believed to move within the cell membrane, do not really exist April 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project