Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles Deliver Combination Chemotherapy Directly to Prostate Cancer Cells

Abstract:
In recent years, studies have shown that for many types of cancer, combination drug therapy is more effective than single drugs. However, it is usually difficult to get the right amount of each drug to the tumor. Now, researchers at the Massachusetts Institute of Technology (MIT) and Brigham and Women's Hospital have developed a nanoparticle that can deliver precise doses of two or more drugs to prostate cancer cells. Such particles, say the researchers, could improve the effectiveness of chemotherapy while minimizing the side effects normally seen with these drugs.

Nanoparticles Deliver Combination Chemotherapy Directly to Prostate Cancer Cells

Bethesda, MD | Posted on October 27th, 2010

In a study appearing in the Proceedings of the National Academy of Sciences, a team of investigators led by Omid Farokhzad and Robert Langer, both members of the MIT-Harvard Center for Cancer Nanotechnology Excellence, demonstrated the utility of their new particle by using it to deliver cisplatin and docetaxel, two drugs commonly used to treat many different types of cancer.

To build their nanoparticles, the researchers developed a new strategy that allowed them to incorporate drugs with very different physical properties, which had been impossible with previous drug-delivering nanoparticles. In earlier generations of nanoparticles, drug molecules were encapsulated in a polymer coating. Using those particles, hydrophobic (water-repelling) drugs, such as docetaxel, and hydrophilic (water-attracting) drugs, such as cisplatin, can't be carried together, nor can drugs with different charges. "With the old way, you can only do it if the two drugs are physically and chemically similar," said Dr. Farokhzad. "With this way, you can put in drugs that are relatively different from each other."

With the researchers' new technique, called "drug-polymer blending," drug molecules are hung like pendants from individual units of the polymer before the units are assembled into a polymer nanoparticle. This approach allows the researchers to precisely control the ratio of drugs loaded into the particle and to control the rate at which each drug will be released once it enters a tumor cell.

For this study, once the investigators loaded the drugs into the nanoparticle, the researchers added a tag that binds to a molecule called PSMA that is located on the surfaces of most prostate tumor cells. This tag allows the nanoparticles to go directly to their target, bypassing healthy tissues and potentially reducing the side effects caused by most chemotherapy drugs.

The researchers have filed for a patent on the polymer-blending fabrication technique and are now testing the drug-delivering particles in animals. Once they gather enough animal data, which could take a few years, they hope to begin clinical trials.

This work, which is detailed in a paper titled, "Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website.

View abstract at www.pnas.org/content/107/42/17939

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Possible Futures

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Nanomedicine

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Announcements

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Nanobiotechnology

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic