Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UPenn Scientists Develop Method for Detecting MicroRNA From Living Cells

Probe-microRNA duplexes translocate through thin nanopores. (Artwork: Robert Johnson)
Probe-microRNA duplexes translocate through thin nanopores. (Artwork: Robert Johnson)

Abstract:
Researchers at the University of Pennsylvania have developed a new electronic method for detecting microRNA isolated from living cells. MicroRNAs are a class of small biomolecules that control gene expression into proteins, the "workers" of the cell. MicroRNAs act by binding to specific messenger RNAs that code for proteins, and, by doing so, inhibit protein synthesis.

UPenn Scientists Develop Method for Detecting MicroRNA From Living Cells

Philadelphia, PA | Posted on October 26th, 2010

MicroRNAs, or miRNAs, were initially identified in roundworms in 1993. Since then, biologists have discovered that microRNAs control gene expression, and therefore there is immense interest in these molecules as potential therapeutics for silencing cancer and disease-related genes.

The problem with microRNA detection is that the number of copies of microRNA in cells is so small that detection is quite challenging. The team developed a method to fabricate nanopores in the thinnest silicon nitride membranes reported to date, about 6 nm thick.

First, the team showed that these nanopores increase the signal resolution from reading DNA molecules as they pass through the pores. After demonstrating the enhanced sensitivity, the Penn team needed a method to isolate a specific microRNA from cells.

They teamed with a group headed by Larry McReynolds of New England Biolabs.

"Larry and co-workers had a neat trick: they use a viral protein called p19 to tightly bind duplex RNA molecules of the exact dimensions of microRNAs," Meni Wanunu, a research associate at Penn, said. "So we devised a plan that uses this protein to isolate very small amounts of specific microRNAs that we can then quantify using our pores."

The team focused on detecting miR122a, a liver-specific microRNA in mammals.

They first demonstrated that their nanopores are reliable enough to quantify the concentrations of these tiny molecules that are only 22 bases long, or 6 nm in length. After having made ultrathin membranes by locally etching silicon nitride, the group used electron beams to drill the nanopores in the thinned portion of the silicon nitride membranes.

"Using 3 nm diameter pores, these duplex RNA molecules just squeeze through the pores and in doing so, each molecule produces a nice electronic signal," Wanunu said. "We were delighted, things worked out really nice. These are the smallest synthetic pores in all dimensions, and it is surprising how stable and robust they are. We now use them routinely for various investigations; they are our new state-of-the-art."

The article, featured on the cover of the November 2010 issue of Nature Nanotechnology, shows a duplex microRNA molecule passing through a very thin nanopore made at Penn.

"It is wonderful to see the expected improvements in signal to noise ratios using these thin nanopores," Marija Drndić, an associate professor of physics and the group leader on the project, said. "In spite of their being thin, they are quite robust, and they seem to function every time because they do not tend to trap hydrophobic contaminants and they allow unimpeded flow through them. All this makes them ideal candidates for various biophysical applications."

The Penn team is now working on specific methods for detecting other small molecules, as well as integrating these nanopores with fluidic systems to improve sensitivity.

The research was conducted by Wanunu, Drndić Tali Dadosh and Vishva Ray of Penn, and Jingmin Jin and McReynolds of New England Biolabs.

The research was supported by a National Institutes of Health grant and the Penn Genome Frontiers Institute of the Commonwealth of Pennsylvania and Pennsylvania Department of Health.

The Department of Health specifically disclaims responsibility for any analyses, interpretations or conclusions.

####

For more information, please click here

Contacts:
Jacquie Posey

215-898-8658

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Possible Futures

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanomedicine

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Nanobiotechnology

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project