Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UPenn Scientists Develop Method for Detecting MicroRNA From Living Cells

Probe-microRNA duplexes translocate through thin nanopores. (Artwork: Robert Johnson)
Probe-microRNA duplexes translocate through thin nanopores. (Artwork: Robert Johnson)

Abstract:
Researchers at the University of Pennsylvania have developed a new electronic method for detecting microRNA isolated from living cells. MicroRNAs are a class of small biomolecules that control gene expression into proteins, the "workers" of the cell. MicroRNAs act by binding to specific messenger RNAs that code for proteins, and, by doing so, inhibit protein synthesis.

UPenn Scientists Develop Method for Detecting MicroRNA From Living Cells

Philadelphia, PA | Posted on October 26th, 2010

MicroRNAs, or miRNAs, were initially identified in roundworms in 1993. Since then, biologists have discovered that microRNAs control gene expression, and therefore there is immense interest in these molecules as potential therapeutics for silencing cancer and disease-related genes.

The problem with microRNA detection is that the number of copies of microRNA in cells is so small that detection is quite challenging. The team developed a method to fabricate nanopores in the thinnest silicon nitride membranes reported to date, about 6 nm thick.

First, the team showed that these nanopores increase the signal resolution from reading DNA molecules as they pass through the pores. After demonstrating the enhanced sensitivity, the Penn team needed a method to isolate a specific microRNA from cells.

They teamed with a group headed by Larry McReynolds of New England Biolabs.

"Larry and co-workers had a neat trick: they use a viral protein called p19 to tightly bind duplex RNA molecules of the exact dimensions of microRNAs," Meni Wanunu, a research associate at Penn, said. "So we devised a plan that uses this protein to isolate very small amounts of specific microRNAs that we can then quantify using our pores."

The team focused on detecting miR122a, a liver-specific microRNA in mammals.

They first demonstrated that their nanopores are reliable enough to quantify the concentrations of these tiny molecules that are only 22 bases long, or 6 nm in length. After having made ultrathin membranes by locally etching silicon nitride, the group used electron beams to drill the nanopores in the thinned portion of the silicon nitride membranes.

"Using 3 nm diameter pores, these duplex RNA molecules just squeeze through the pores and in doing so, each molecule produces a nice electronic signal," Wanunu said. "We were delighted, things worked out really nice. These are the smallest synthetic pores in all dimensions, and it is surprising how stable and robust they are. We now use them routinely for various investigations; they are our new state-of-the-art."

The article, featured on the cover of the November 2010 issue of Nature Nanotechnology, shows a duplex microRNA molecule passing through a very thin nanopore made at Penn.

"It is wonderful to see the expected improvements in signal to noise ratios using these thin nanopores," Marija Drndić, an associate professor of physics and the group leader on the project, said. "In spite of their being thin, they are quite robust, and they seem to function every time because they do not tend to trap hydrophobic contaminants and they allow unimpeded flow through them. All this makes them ideal candidates for various biophysical applications."

The Penn team is now working on specific methods for detecting other small molecules, as well as integrating these nanopores with fluidic systems to improve sensitivity.

The research was conducted by Wanunu, Drndić Tali Dadosh and Vishva Ray of Penn, and Jingmin Jin and McReynolds of New England Biolabs.

The research was supported by a National Institutes of Health grant and the Penn Genome Frontiers Institute of the Commonwealth of Pennsylvania and Pennsylvania Department of Health.

The Department of Health specifically disclaims responsibility for any analyses, interpretations or conclusions.

####

For more information, please click here

Contacts:
Jacquie Posey

215-898-8658

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyčres' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project