Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoplas Extends Line of Dry Processing Systems With Tool for 200mm MEMS and 3D TSV Packaging

Abstract:
DSB 9000A Offers Component Manufacturers High Throughput, Lower Cost of Ownership and Flexibility of Process Choice

Nanoplas Extends Line of Dry Processing Systems With Tool for 200mm MEMS and 3D TSV Packaging

Orsay, France | Posted on October 26th, 2010

Nanoplas, a fast-growing global supplier of HDRF® plasma processing equipment for MEMS, 3D through-silicon vias (TSVs), IC packaging and III-V compounds, today introduced a fully automatic dry-processing batch system for high-volume 200mm production.

The DSB 9000A is based on Nanoplas's High Density Radical Flux (HDRF) technology and performs, in one tool, key production steps in microelectronic manufacturing, including:

• Removal of Bosch-process polymers, residues and photoresist from 80-250° C

• Isotropic etching of organic sacrificial layers, and

• Pre-wafer bonding activation

"The DSB 9000A, the newest tool in our growing line of plasma processing equipment, outperforms conventional radio-frequency plasma and microwave systems, while greatly reducing the risk of surface damage," said Gilles Baujon, CEO of Nanoplas. "This flexible, high-throughput, 200mm system offers MEMS manufacturers damage free dry processing, while eliminating costly steps, resulting in lower cost of ownership."

With 100 percent gas disassociation, the DSB 9000A ICP source produces free-radical concentration levels of up to 1,000 times greater than conventional plasma sources, thus providing enhanced process performance, including higher cleaning performance for high aspect ratio structures. The system's proprietary technology eliminates the charging effects and UV radiation normally associated with conventional plasma, allowing stiction-free processing and low-temperature operation.

HDRF gives process engineers outstanding flexibility, offering three distinct modes of operation covering a wide range of processes, from ultra-sensitive surface cleaning to removal of non-reactive residues. Typical throughput for photoresist stripping is 60-70 WPH, and greater than 100 WPH, per process module, for post-Bosch cleaning and surface activation.

####

About Nanoplas
Nanoplas is an innovator of specialized production solutions that deliver low-cost, green alternatives for treating wafer surfaces in next-generation devices, advanced MEMS, 3D TSVs, advanced packaging, power ICs, optoelectronic components and III-V compounds. The company’s High Density Radical Flux (HDRF®) plasma-processing technology delivers sophisticated cleaning techniques for removing Bosch polymers, resistant residues, and photoresist at low temperatures, while providing exceptional process quality, high yields and low cost of ownership. The company, which won a Best Process award in 2008 from EuroAsia Semiconductor, is based in Orsay, France. Its wholly owned subsidiary, Nanoplas North America Inc., operates a lab in Dallas, TX, and is headquartered in San Francisco, CA. Visit www.nanoplas.eu for more information.

For more information, please click here

Contacts:
Jana Yuen
Account Coordinator

loomis::group
www.loomisgroup.com
phone +33 (0)1 58 18 59 30

Copyright © Nanoplas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project