Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New equation could advance research in solar cell materials

Abstract:
A groundbreaking new equation developed in part by researchers at the University of Michigan could do for organic semiconductors what the Shockley ideal diode equation did for inorganic semiconductors: help to enable their wider adoption.

Without the Shockley equation, the computers of today would not be possible.

New equation could advance research in solar cell materials

Ann Arbor, MI | Posted on October 23rd, 2010

Developed in 1949 by William Shockley, the inventor of the transistor, the Shockley equation describes the relationship between electric current and voltage in inorganic semiconductors such as silicon.

The new equation describes the relationship of current to voltage at the junctions of organic semiconductors—carbon-rich compounds that don't necessarily come from a biological source, but resemble them. Organic semiconductors present special challenges for researchers because they are more disordered than their inorganic counterparts. But they could enable advanced solar cells, thin and intense OLED (organic light-emitting diode) displays, and high-efficiency lighting.

"The field of organic semiconductor research is still in its infancy. We're not making complicated circuits with them yet, but in order to do that someday, we need to know the precise relationship of current and voltage. Our new equation gives us fundamental insights into how charge moves in this class of materials. From my perspective, it's a very significant advance," said Steve Forrest, the William Gould Dow Collegiate Professor of Electrical Engineering and U-M vice president for research.

Forrest and his doctoral students, Noel Giebink (now at Argonne National Laboratories) and Brian Lassiter, in the U-M Department of Electrical Engineering and Computer Science, contributed to this research. Two papers on the work are published in the current edition of Physical Review B.

About six years ago, researchers in Forrest's lab realized that they could use Shockley's equation to describe the current/voltage relationship in their organic solar cells to a degree.

"It fit nicely if you didn't look too hard," Forrest said.

Their findings were published, and from that time on, many physicists and engineers used the Shockley equation for organic semiconductors even though it didn't describe the physics perfectly. The new equation does.

Forrest says it will allow researchers to better describe and predict the properties of the different organic semiconductors they're working with. And in that way, they'll be able to more efficiently choose which material best suits the needs of the device they're working on.

"People have been investigating organic semiconductors for 70 or 80 years, but we're just entering the world of applications," Forrest said. "This work will help advance the field forward."

The papers are titled, "The Ideal Diode Equation for Organic Heterojunctions. I. Derivation and Application," and "The Ideal Diode Equation for Organic Heterojunctions. II. The Role of Polaron Pair Recombination."

Forrest is also a professor in the departments of Physics, and Materials Science and Engineering. Others contributing to this work are affiliated with Argonne National Laboratory's Center for Nanoscale Materials and Northwestern University.

This research is funded in party by the Department of Energy's Office of Basic Energy Sciences through the U-M Center for Solar and Thermal Energy Conversion, and the Argonne-Northwestern Solar Energy Research Center.

####

About University of Michigan College of Engineering
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-7087

Copyright © University of Michigan College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Display technology/LEDs/SS Lighting/OLEDs

Copper shines as flexible conductor August 29th, 2014

Physics

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Energy

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Future solar panels September 2nd, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Solar/Photovoltaic

Future solar panels September 2nd, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE