Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New equation could advance research in solar cell materials

Abstract:
A groundbreaking new equation developed in part by researchers at the University of Michigan could do for organic semiconductors what the Shockley ideal diode equation did for inorganic semiconductors: help to enable their wider adoption.

Without the Shockley equation, the computers of today would not be possible.

New equation could advance research in solar cell materials

Ann Arbor, MI | Posted on October 23rd, 2010

Developed in 1949 by William Shockley, the inventor of the transistor, the Shockley equation describes the relationship between electric current and voltage in inorganic semiconductors such as silicon.

The new equation describes the relationship of current to voltage at the junctions of organic semiconductorsócarbon-rich compounds that don't necessarily come from a biological source, but resemble them. Organic semiconductors present special challenges for researchers because they are more disordered than their inorganic counterparts. But they could enable advanced solar cells, thin and intense OLED (organic light-emitting diode) displays, and high-efficiency lighting.

"The field of organic semiconductor research is still in its infancy. We're not making complicated circuits with them yet, but in order to do that someday, we need to know the precise relationship of current and voltage. Our new equation gives us fundamental insights into how charge moves in this class of materials. From my perspective, it's a very significant advance," said Steve Forrest, the William Gould Dow Collegiate Professor of Electrical Engineering and U-M vice president for research.

Forrest and his doctoral students, Noel Giebink (now at Argonne National Laboratories) and Brian Lassiter, in the U-M Department of Electrical Engineering and Computer Science, contributed to this research. Two papers on the work are published in the current edition of Physical Review B.

About six years ago, researchers in Forrest's lab realized that they could use Shockley's equation to describe the current/voltage relationship in their organic solar cells to a degree.

"It fit nicely if you didn't look too hard," Forrest said.

Their findings were published, and from that time on, many physicists and engineers used the Shockley equation for organic semiconductors even though it didn't describe the physics perfectly. The new equation does.

Forrest says it will allow researchers to better describe and predict the properties of the different organic semiconductors they're working with. And in that way, they'll be able to more efficiently choose which material best suits the needs of the device they're working on.

"People have been investigating organic semiconductors for 70 or 80 years, but we're just entering the world of applications," Forrest said. "This work will help advance the field forward."

The papers are titled, "The Ideal Diode Equation for Organic Heterojunctions. I. Derivation and Application," and "The Ideal Diode Equation for Organic Heterojunctions. II. The Role of Polaron Pair Recombination."

Forrest is also a professor in the departments of Physics, and Materials Science and Engineering. Others contributing to this work are affiliated with Argonne National Laboratory's Center for Nanoscale Materials and Northwestern University.

This research is funded in party by the Department of Energy's Office of Basic Energy Sciences through the U-M Center for Solar and Thermal Energy Conversion, and the Argonne-Northwestern Solar Energy Research Center.

####

About University of Michigan College of Engineering
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-7087

Copyright © University of Michigan College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Physics

Superfast light source made from artificial atom April 28th, 2016

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Rare Earth atoms see the light: Physicist Dirk Bouwmeester discovers a promising route for combined optical and solid state-based quantum information processing April 25th, 2016

Atoms placed precisely in silicon can act as quantum simulator April 24th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Possible Futures

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic