Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New equation could advance research in solar cell materials

Abstract:
A groundbreaking new equation developed in part by researchers at the University of Michigan could do for organic semiconductors what the Shockley ideal diode equation did for inorganic semiconductors: help to enable their wider adoption.

Without the Shockley equation, the computers of today would not be possible.

New equation could advance research in solar cell materials

Ann Arbor, MI | Posted on October 23rd, 2010

Developed in 1949 by William Shockley, the inventor of the transistor, the Shockley equation describes the relationship between electric current and voltage in inorganic semiconductors such as silicon.

The new equation describes the relationship of current to voltage at the junctions of organic semiconductors—carbon-rich compounds that don't necessarily come from a biological source, but resemble them. Organic semiconductors present special challenges for researchers because they are more disordered than their inorganic counterparts. But they could enable advanced solar cells, thin and intense OLED (organic light-emitting diode) displays, and high-efficiency lighting.

"The field of organic semiconductor research is still in its infancy. We're not making complicated circuits with them yet, but in order to do that someday, we need to know the precise relationship of current and voltage. Our new equation gives us fundamental insights into how charge moves in this class of materials. From my perspective, it's a very significant advance," said Steve Forrest, the William Gould Dow Collegiate Professor of Electrical Engineering and U-M vice president for research.

Forrest and his doctoral students, Noel Giebink (now at Argonne National Laboratories) and Brian Lassiter, in the U-M Department of Electrical Engineering and Computer Science, contributed to this research. Two papers on the work are published in the current edition of Physical Review B.

About six years ago, researchers in Forrest's lab realized that they could use Shockley's equation to describe the current/voltage relationship in their organic solar cells to a degree.

"It fit nicely if you didn't look too hard," Forrest said.

Their findings were published, and from that time on, many physicists and engineers used the Shockley equation for organic semiconductors even though it didn't describe the physics perfectly. The new equation does.

Forrest says it will allow researchers to better describe and predict the properties of the different organic semiconductors they're working with. And in that way, they'll be able to more efficiently choose which material best suits the needs of the device they're working on.

"People have been investigating organic semiconductors for 70 or 80 years, but we're just entering the world of applications," Forrest said. "This work will help advance the field forward."

The papers are titled, "The Ideal Diode Equation for Organic Heterojunctions. I. Derivation and Application," and "The Ideal Diode Equation for Organic Heterojunctions. II. The Role of Polaron Pair Recombination."

Forrest is also a professor in the departments of Physics, and Materials Science and Engineering. Others contributing to this work are affiliated with Argonne National Laboratory's Center for Nanoscale Materials and Northwestern University.

This research is funded in party by the Department of Energy's Office of Basic Energy Sciences through the U-M Center for Solar and Thermal Energy Conversion, and the Argonne-Northwestern Solar Energy Research Center.

####

About University of Michigan College of Engineering
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-7087

Copyright © University of Michigan College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

New conductive coatings for flexible touchscreens – presentation at nano tech 2015 in Japan January 22nd, 2015

Physics

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

Self-destructive Effects of Magnetically-doped Ferromagnetic Topological Insulators: Magnetic atoms that create exotic surface property also sow the seeds of its destruction January 19th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Possible Futures

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Energy

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Solar/Photovoltaic

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE