Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Going nature one better

An image of a species of diatom, Cymbela cistula. Markus Buehler says diatoms are a good example of the way weak building blocks — in this case, fragile and brittle silica — can be used in biology to build strong and durable materials, by assembling them in structures organized differently at different scales. Image: NSF
An image of a species of diatom, Cymbela cistula. Markus Buehler says diatoms are a good example of the way weak building blocks — in this case, fragile and brittle silica — can be used in biology to build strong and durable materials, by assembling them in structures organized differently at different scales. Image: NSF

Abstract:
MIT researchers aim to learn biology's secrets for making tough, resilient materials out of simple components, and then improve on them.

By David L. Chandler, MIT News Office

Going nature one better

Cambridge, MA | Posted on October 23rd, 2010

Nature has one very big advantage over any human research team: plenty of time. Billions of years, in fact. And over all that time, it has produced some truly amazing materials — using weak building blocks that human engineers have not yet figured out how to use for high-tech applications, and with many properties that humans have yet to find ways to duplicate.

But now a number of researchers such as MIT professor Markus Buehler have begun to unravel these processes at a deep level, not just finding out how the materials behave but also what the essential structural and chemical characteristics are that give them their unique properties. In the future, they hope to mimic those structures in ways that produce even better results.

It all comes down to assembling complex structures from small, simple building blocks, Buehler explains. He likes to use a musical analogy: A symphony comprises many different instruments, each of which on its own could never produce something as grand and complex as the combined rich, full musical experience. In a similar way, he hopes to construct complex materials with previously unavailable properties by using simple building blocks assembled in ways that borrow from those used by nature.

Human engineers, he explains, do have at least one important advantage over nature: They can choose their materials. Nature, by contrast, often has to make do with whatever is readily available locally, and whatever structures have been created through the lengthy trial-and-error of evolution. "A spider or a cell," Buehler says, "doesn't have great resources. It can't import materials, it uses what's available."

In biological materials such as spider silk, the geometry of the structures makes all the difference. Silk, a subject of earlier studies by Buehler and his colleagues, is made up of molecules that are, in themselves, inherently weak, but the basic disk-shaped molecules are combined into small stacks, which are in turn combined into cross-linked fibers in a way that makes the whole far stronger than its component parts. Engineers could learn a thing or two from such structures, Buehler suggests, with their different arrangements at different scales. "If we figure out how to design things at multiple scales, we don't need fancy building blocks," he says.

Peter Fratzl, a materials scientist at the Max Planck Institute of Colloids and Interfaces in Germany, sees great promise in this approach. "It is not so much the chemical composition that really counts, but the way the components (which may be intrinsically poor) are joined together," he says. "Unraveling these structural principles requires experimental as well as theoretical approaches covering many length scales, from the size of molecules to complete organs." So far, the research has been mostly on the theoretical side, but Buehler and others are hoping to proceed with experimental work as well.

This design approach not only holds the promise of creating materials with great qualities of strength, or stretchiness, or with useful optical or electrical properties, but also for making use of materials that are now thought to be of little use, or even waste products.

Hierarchical structures

The key to making strong materials out of weak components, Buehler has found, lies in the way small pieces are arranged into larger patterns in different ways at different scales — in other words, in a hierarchical set of structures. "This paradigm, the formation of distinct structure at multiple length scales, enables biological materials to overcome the intrinsic weaknesses of the building blocks," he wrote in a paper appearing this month in the journal Nano Today. Buehler's research was supported by NSF, ARO, AFOSR, ONR, DARPA and the MIT Energy Initiative.

Most of the structural materials designed by people, on the other hand — steel, bricks, mortar — have simple structures that do not vary with scale, although some composite materials and structures built from components such as carbon nanotubes are beginning to implement at least some differentiation of structure with scale. But Buehler sees this as an area that is ripe for much more sophisticated and complex new designs.

Buehler suggests that just as biology has done, humans could engineer materials with desired properties such as strength or flexibility by using abundant and cheap materials such as silica, which in bulk form is brittle and weak. "The design of hierarchical structures could be the key to overcome their intrinsic weakness or brittleness, properties that currently prevent their widespread technological application," he wrote in the Nano Today paper. Using cleverly designed structures, he suggests, humans should be able to produce materials with almost any kind of desired properties, even using a very limited, and "almost arbitrary" set of components.

"We're trying to develop computer models," he says, "so that we can make predictions" about the properties of materials built in ways that have never been made before. "As engineers, we have models for how to make a car, or a building," he says. But for designing the basic structures of new materials, the technology today "is really at an infant stage." But as such models are developed, he says confidently, "we can do much better than biology."

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Chemistry

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Iranian, Spanish Scientists Produce Recyclable Catalyst by Using Nanoparticles September 3rd, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Materials/Metamaterials

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Announcements

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE