Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Going nature one better

An image of a species of diatom, Cymbela cistula. Markus Buehler says diatoms are a good example of the way weak building blocks  in this case, fragile and brittle silica  can be used in biology to build strong and durable materials, by assembling them in structures organized differently at different scales. Image: NSF
An image of a species of diatom, Cymbela cistula. Markus Buehler says diatoms are a good example of the way weak building blocks in this case, fragile and brittle silica can be used in biology to build strong and durable materials, by assembling them in structures organized differently at different scales. Image: NSF

Abstract:
MIT researchers aim to learn biology's secrets for making tough, resilient materials out of simple components, and then improve on them.

By David L. Chandler, MIT News Office

Going nature one better

Cambridge, MA | Posted on October 23rd, 2010

Nature has one very big advantage over any human research team: plenty of time. Billions of years, in fact. And over all that time, it has produced some truly amazing materials using weak building blocks that human engineers have not yet figured out how to use for high-tech applications, and with many properties that humans have yet to find ways to duplicate.

But now a number of researchers such as MIT professor Markus Buehler have begun to unravel these processes at a deep level, not just finding out how the materials behave but also what the essential structural and chemical characteristics are that give them their unique properties. In the future, they hope to mimic those structures in ways that produce even better results.

It all comes down to assembling complex structures from small, simple building blocks, Buehler explains. He likes to use a musical analogy: A symphony comprises many different instruments, each of which on its own could never produce something as grand and complex as the combined rich, full musical experience. In a similar way, he hopes to construct complex materials with previously unavailable properties by using simple building blocks assembled in ways that borrow from those used by nature.

Human engineers, he explains, do have at least one important advantage over nature: They can choose their materials. Nature, by contrast, often has to make do with whatever is readily available locally, and whatever structures have been created through the lengthy trial-and-error of evolution. "A spider or a cell," Buehler says, "doesn't have great resources. It can't import materials, it uses what's available."

In biological materials such as spider silk, the geometry of the structures makes all the difference. Silk, a subject of earlier studies by Buehler and his colleagues, is made up of molecules that are, in themselves, inherently weak, but the basic disk-shaped molecules are combined into small stacks, which are in turn combined into cross-linked fibers in a way that makes the whole far stronger than its component parts. Engineers could learn a thing or two from such structures, Buehler suggests, with their different arrangements at different scales. "If we figure out how to design things at multiple scales, we don't need fancy building blocks," he says.

Peter Fratzl, a materials scientist at the Max Planck Institute of Colloids and Interfaces in Germany, sees great promise in this approach. "It is not so much the chemical composition that really counts, but the way the components (which may be intrinsically poor) are joined together," he says. "Unraveling these structural principles requires experimental as well as theoretical approaches covering many length scales, from the size of molecules to complete organs." So far, the research has been mostly on the theoretical side, but Buehler and others are hoping to proceed with experimental work as well.

This design approach not only holds the promise of creating materials with great qualities of strength, or stretchiness, or with useful optical or electrical properties, but also for making use of materials that are now thought to be of little use, or even waste products.

Hierarchical structures

The key to making strong materials out of weak components, Buehler has found, lies in the way small pieces are arranged into larger patterns in different ways at different scales in other words, in a hierarchical set of structures. "This paradigm, the formation of distinct structure at multiple length scales, enables biological materials to overcome the intrinsic weaknesses of the building blocks," he wrote in a paper appearing this month in the journal Nano Today. Buehler's research was supported by NSF, ARO, AFOSR, ONR, DARPA and the MIT Energy Initiative.

Most of the structural materials designed by people, on the other hand steel, bricks, mortar have simple structures that do not vary with scale, although some composite materials and structures built from components such as carbon nanotubes are beginning to implement at least some differentiation of structure with scale. But Buehler sees this as an area that is ripe for much more sophisticated and complex new designs.

Buehler suggests that just as biology has done, humans could engineer materials with desired properties such as strength or flexibility by using abundant and cheap materials such as silica, which in bulk form is brittle and weak. "The design of hierarchical structures could be the key to overcome their intrinsic weakness or brittleness, properties that currently prevent their widespread technological application," he wrote in the Nano Today paper. Using cleverly designed structures, he suggests, humans should be able to produce materials with almost any kind of desired properties, even using a very limited, and "almost arbitrary" set of components.

"We're trying to develop computer models," he says, "so that we can make predictions" about the properties of materials built in ways that have never been made before. "As engineers, we have models for how to make a car, or a building," he says. But for designing the basic structures of new materials, the technology today "is really at an infant stage." But as such models are developed, he says confidently, "we can do much better than biology."

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanotubes/Buckyballs/Fullerenes

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Materials/Metamaterials

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project