Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Lighting takes shape

David Carroll, the lead researcher for PureLux Inc. and director of the Center for Nanotechnology and Molecular Materials.
David Carroll, the lead researcher for PureLux Inc. and director of the Center for Nanotechnology and Molecular Materials.

Abstract:
New device for home, office won't break or generate heat

By Alicia Roberts

Lighting takes shape

Winston-Salem, NC | Posted on October 22nd, 2010

Researchers at Wake Forest's Center for Nanotechnology and Molecular Materials have developed an inexpensive new light source that's cool to the touch, won't break if dropped, and can be molded into any shape.

"Imagine that you no longer have to screw a light bulb into your lamp - because the lampshade is what lights up," said David Carroll, the lead researcher for PureLux Inc. and director of the Center for Nanotechnology and Molecular Materials.

A spin-off company from Wake Forest, PureLux Inc. has attracted $2 million in venture capital to bring the technology to market. Wake Forest founded PureLux Inc. in 2007 to commercialize the advanced lighting technology developed at its Nanotech Center. The company has begun to ready the technology for real-world applications - from back-lighting on e-books and self-illuminating street signs to work surfaces that light-up and replace lighting fixtures in office spaces, said Ken Garcia, president of PureLux Inc.

"Wake Forest is happy to be able to provide strong research to innovate lighting technology," said Mark Welker, associate provost for research at Wake Forest. "We're also happy to help fuel the economic strength of our region by encouraging corporations to take advantage of Winston-Salem's rich technology support and expertise."

Yellowstone Energy Ventures II, a Houston venture capital fund, led the new investment, and was joined by Prospect Holdings of Charlotte, N.C., and the university. NanoHoldings LLC of Rowayton, Conn., provided start-up funding in 2007.

The PureLux device uses nanotechnology to produce visible light directly; other solutions create light as a byproduct of heating a filament or gas. Unlike other new lighting solutions such as compact fluorescents, PureLux technology requires no warm-up period - it's bright as soon as you turn it on.

"If you have a lighting source that does not create heat as a byproduct and can illuminate a space as well as or better than any other solution, think about how much it can lower costs - and environmental impact - in every office building," Carroll said.

Because they are made of moldable plastic, PureLux lights can be used in multiple settings, from homes to commercial buildings.

"This device is made of a paper-thin film. It's flexible and efficient. It provides white light, and it has a long lifetime," Garcia said. "The potential for real-world applications is fantastic."

####

For more information, please click here

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Inspiration from the ocean: An interdisciplinary team of researchers at UC Santa Barbara has developed a non-toxic, high-quality surface treatment for organic field-effect transistors October 18th, 2016

Possible Futures

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Investments/IPO's/Splits

Harris & Harris Group Issues Letter to Shareholders and Information for Shareholder Call on Tuesday, November 15, 2016 November 14th, 2016

Harris & Harris Group Issues Business Update and Reports Financial Statements as of September 30, 2016 November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Environment

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Marsden minds: Amazing projects revealed November 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project