Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Intricate, curving 3D nanostructures created using capillary action forces

By using unique two-dimensional templates, researchers at the University of Michigan could 
coax carbon nanotubes to grow in intricate, curving three-dimensional structures. Credit: A. John Hart
By using unique two-dimensional templates, researchers at the University of Michigan could coax carbon nanotubes to grow in intricate, curving three-dimensional structures. Credit: A. John Hart

Abstract:
Twisting spires, concentric rings, and gracefully bending petals are a few of the new three-dimensional shapes that University of Michigan engineers can make from carbon nanotubes using a new manufacturing process.

Intricate, curving 3D nanostructures created using capillary action forces

Ann Arbor, MI | Posted on October 22nd, 2010

The process is called "capillary forming," and it takes advantage of capillary action, the phenomenon at work when liquids seem to defy gravity and spontaneously travel up a drinking straw.

The new miniature shapes have the potential to harness the exceptional mechanical, thermal, electrical, and chemical properties of carbon nanotubes in a scalable fashion, said A. John Hart, an assistant professor in the Department of Mechanical Engineering and in the School of Art & Design.

The 3D nanotube structures could enable countless new materials and microdevices, including probes that can interface with individual cells, novel microfluidic devices, and lightweight materials for aircraft and spacecraft.

A paper on the research is published in the October edition of Advanced Materials, and is featured on the cover.

"It's easy to make carbon nanotubes straight and vertical like buildings," Hart said. "It hasn't been possible to make them into more complex shapes. Assembling nanostructures into three-dimensional shapes is one of the major goals of nanotechnology and nanomanufacturing. The method of capillary forming could be applied to many types of nanotubes and nanowires, and its scalability is very attractive for manufacturing."

Hart's method starts by patterning a thin metal film on a silicon wafer. This film is the iron catalyst that facilitates the growth of vertical carbon nanotube "forests" in patterned shapes. It's a sort of template. Rather than pattern the catalyst into uniform shapes such as circles and squares, Hart's team patterns a variety of unique shapes such as hollow circles, half circles, and circles with smaller ones cut from their centers. The shapes are arranged in different orientations and groupings, creating different templates for later forming the 3D structures using capillary action.

He uses a chemical vapor deposition process to grow the nanotubes in the prescribed patterns. Chemical vapor deposition involves heating the substrate with the catalyst pattern in a high temperature furnace containing a hydrocarbon gas mixture. The gas reacts over the catalyst, and the carbon from the gas is converted into nanotubes, which grow upward like grass.

Then he suspends the silicon wafer with its nanotubes over a beaker of a boiling acetone. He lets the acetone condense on the nanotubes, and then evaporate.

As the liquid condenses, it travels upward into the spaces among the vertical nanotubes. Capillary action kicks in and transforms the vertical nanotubes into the intricate three-dimensional structures. For example, tall half-cylinders of nanotubes bend backwards to form a shape resembling a three-dimensional flower.

"We program the formation of 3D shapes with these 2D patterns," Hart said. "We've discovered that the starting shape influences how the capillary forces manipulate the nanotubes in a very specific way. Some bend, others twist, and we can combine them any way we want."

The capillary forming process allows the researchers to create large batches of 3D microstructures—all much smaller than a cubic millimeter, Hart said. In addition, the researchers show that their 3D structures are up to 10 times stiffer than typical polymers used in microfabrication. Thus, they can be used as molds for manufacturing of the same 3D shapes in other materials.

"We think this opens up the possibility to create custom nanostructured surfaces and materials with locally varying geometries and properties, " Hart said. "Before, we thought of materials as having the same properties everywhere, but with this new technique we can dream of designing the structure and properties of a material together."

The paper is called "Diverse 3D Microarchitectures Made by Capillary Forming of Carbon Nanotubes," The lead authors are postdoctoral researcher Michael De Volder, and Sameh Tawfick, a doctoral candidate in Mechanical Engineering.

This research is funded by the University of Michigan College of Engineering and the U-M Department of Mechanical Engineering, the Belgium Fund for Scientific Research, and the National Science Foundation.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

####

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Patents/IP/Tech Transfer/Licensing

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Aerospace/Space

Launch of the Alliance for Space Development March 1st, 2015

National Space Society and Space Frontier Foundation announce the formation of the Alliance for Space Development February 25th, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE