Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL scientists reveal battery behavior at the nanoscale

A new electrochemical strain microscopy (ESM) technique developed at Oak Ridge National Laboratory can map lithium ion flow through a battery’s cathode material. This 1 micron x 1 micron composite image demonstrates how regions on a cathode surface display varying electrochemical behaviors when probed with ESM.
A new electrochemical strain microscopy (ESM) technique developed at Oak Ridge National Laboratory can map lithium ion flow through a battery’s cathode material. This 1 micron x 1 micron composite image demonstrates how regions on a cathode surface display varying electrochemical behaviors when probed with ESM.

Abstract:
As industries and consumers increasingly seek improved battery power sources, cutting-edge microscopy performed at the Department of Energy's Oak Ridge National Laboratory is providing an unprecedented perspective on how lithium-ion batteries function.

ORNL scientists reveal battery behavior at the nanoscale

Oak Ridge, TN | Posted on October 20th, 2010

A research team led by ORNL's Nina Balke, Stephen Jesse and Sergei Kalinin has developed a new type of scanning probe microscopy called electrochemical strain microscopy (ESM) to examine the movement of lithium ions through a battery's cathode material. The research, "Nanoscale mapping of ion diffusion in a lithium-ion battery cathode" (Balke et al.), is published in Nature Nanotechnology.

"We can provide a detailed picture of ionic motion in nanometer volumes, which exceeds state-of-the-art electrochemical techniques by six to seven orders of magnitude," Kalinin said. Researchers achieved the results by applying voltage with an ESM probe to the surface of the battery's layered cathode. By measuring the corresponding electrochemical strain, or volume change, the team was able to visualize how lithium ions flowed through the material. Conventional electrochemical techniques, which analyze electric current instead of strain, do not work on a nanoscale level because the electrochemical currents are too small to measure, Kalinin explained.

"These are the first measurements, to our knowledge, of lithium ion flow at this spatial resolution," Kalinin said.

Lithium-ion batteries, which power electronic devices from cell phones to electric cars, are valued for their low weight, high energy density and recharging ability. Researchers hope to extend the batteries' performance by lending engineers a finely tuned knowledge of battery components and dynamics.

"We want to understand - from a nanoscale perspective - what makes one battery work and one battery fail. This can be done by examining its functionality at the level of a single grain or an extended defect," Balke said.

The team's ESM imaging can display features such as individual grains, grain clusters and defects within the cathode material. The high-resolution mapping showed, for example, that the lithium ion flow can concentrate along grain boundaries, which could lead to cracking and battery failure. Researchers say these types of nanoscale phenomena need to be examined and correlated to overall battery functionality.

"Very small changes at the nanometer level could have a huge impact at the device level," Balke said. "Understanding the batteries at this length scale could help make suggestions for materials engineering."

Although the research focused on lithium-ion batteries, the team expects that its technique could be used to measure other electrochemical solid-state systems, including other battery types, fuel cells and similar electronic devices that use nanoscale ionic motion for information storage.

"We see this method as an example of the kinds of higher dimensional scanning probe techniques that we are developing at CNMS that enable us to see the inner workings of complex materials at the nanoscale," Jesse said. "Such capabilities are particularly relevant to the increasingly important area of energy research."

Balke, Jesse and Kalinin are research scientists at ORNL's Center for Nanophase Materials Science. The research team includes Nancy Dudney, Yoongu Kim and Leslie Adamczyk from ORNL's Materials Sciences and Technology Division. The key theoretical results in the work were obtained by Anna Morozovska and Eugene Eliseev at the National Academy of Science of Ukraine and Tony Chung and Edwin Garcia at Purdue University.

This research was supported as part of the Fluid Interface Reactions, Structures and Transport Center, an Energy Frontier Research Center funded by the Department of Energy, Office of Science.

Part of this work was supported by the Center for Nanophase Materials Sciences (CNMS) at ORNL. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

For more information about the DOE NSRCs, please visit nano.energy.gov.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Possible Futures

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Materials/Metamaterials

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Announcements

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Tools

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Energy

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Research partnerships

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project