Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Watching nanosheets and molecules transform under pressure could lead to stronger materials

Wang and colleagues used small angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD) to observe changes in the molecular structure of wurtzite crystal under pressure.
Wang and colleagues used small angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD) to observe changes in the molecular structure of wurtzite crystal under pressure.

Abstract:
Researchers have taken a potential step toward creating a new class of exceptionally strong, durable materials that maintain their high-pressure properties -- including strength and superconductivity -- in everyday low-pressure environments.

By Lauren Gold

Watching nanosheets and molecules transform under pressure could lead to stronger materials

Ithaca, NY | Posted on October 20th, 2010

When it comes to tests of strength, graphite -- actually layered sheets of carbon atoms -- fares badly. Subject it to ultra-high pressure, though, and graphite becomes diamond, the hardest substance known, and a uniquely useful material in a variety of applications.

But while diamonds may be forever, most materials that transform under high pressure revert to their original structure when the pressure is lifted -- losing any useful properties they may have gained when the squeeze was on.

Now, by understanding the process behind the transformation itself, from both experimental and theoretical perspectives, researchers have taken a potential step toward creating a new class of exceptionally strong, durable materials that maintain their high-pressure properties -- including strength and superconductivity -- in everyday low-pressure environments.

The research, led by Zhongwu Wang, staff scientist at the Cornell High Energy Synchrotron Source (CHESS) and including Roald Hoffmann, the 1981 chemistry Nobel laureate and Frank H.T. Rhodes Professor of Humane Letters Emeritus, appears in the Oct. 12, issue of the Proceedings of the National Academy of Sciences.

Additional scientists at CHESS, a group in Korea and a postdoctoral associate in the Hoffmann group, Xiao-dong Wen, also contributed.

Researchers frequently use X-ray diffraction, a technique in which X-rays are projected at a structure and captured on film after they pass through or bounce off its surfaces, to determine the static structures of atoms and molecules. But until now, the transformation and interaction between two structures happened in a metaphorical black box, said Wang.

To open the box, researchers focused on wurtzite, a cadmium-selenium crystal in which atoms are arranged in a diamondlike structure and molecules are bonded on the surface. When thin sheets of wurtzite are squeezed under 10.7 gigapascals of pressure, or 107,000 times the pressure on the Earth's surface, their atomic structure transforms into a rock salt-like structure

Subjecting a macro-sized crystal to high pressure can cause it to break (small defects in the crystal structure magnify, causing the structure, and the transformation process, to become irregular) -- so the group's Korean collaborators instead prepared wurtzite nanosheets, which are just 1.4 nanometers thick and defect-free.

As pressure was applied, Wang and colleagues integrated two X-ray diffraction techniques (small- and large-angle X-ray diffraction) to characterize changes in the crystal's surface shape and interior atomic structure, as well as the structural change of surface-bonded molecules.

They first discovered that the nanosheets required three times the pressure to undergo the transformation as the same material in larger crystal form.

They also tested the material's yield strength (the stress level at which it begins to deform), hardness (resistance to scratching or abrading) and elasticity (ability to return to its original form) during the transformation. Understanding how those properties change as the molecules interact could help researchers design stronger, tougher materials, Wang said.

And adding a bonding molecule called a soft ligand to the surface of the high-pressure nanosheets, the researchers observed the effect of that bonding to the nanosheets' internal structure, transformation pressure, and spacing.

Meanwhile, as Wang and colleagues performed the experiments at CHESS, Wen and Hoffmann worked on the corresponding theory behind the transformation interaction.

"Both the experiment and the simulation agree well," Wang said. "Now we know how the atoms move. We understand the intermediate procedure."

The next step is to test ways of blocking the reverse transformation from rock salt back to wurtzite, creating a material that maintains rock salt's unique properties under ambient pressure.

And Wang's experimental process could hold promise for understanding the transformation pathway for other compounds as well.

"It can apply to all other materials," Wang said. "Just follow our way of measurement."

The research was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Lauren Gold
(607) 255-9736

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineers develop new materials for hydrogen storage April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014

Materials/Metamaterials

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Properties of Coatings Used in Electrical Insulators Modified by Iranian Researchers April 14th, 2014

Graphene Supermarket to offer HDPlas™ by Haydale, a High-Performance Graphene Material April 10th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE