Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne scientists watch the birth of nanoparticles for the first time

These silver nanoplates are decorated with silver oxy salt nanoparticles along the edges. These nanostructures were grown under irradiation of high-energy x-rays, which allowed scientists to "watch" them grow in real time. The image is from a scanning electron microscope.
These silver nanoplates are decorated with silver oxy salt nanoparticles along the edges. These nanostructures were grown under irradiation of high-energy x-rays, which allowed scientists to "watch" them grow in real time. The image is from a scanning electron microscope.

Abstract:
A team of scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory and the Carnegie Institution of Washington has succeeded in "watching" nanoparticles grow in real time.

Argonne scientists watch the birth of nanoparticles for the first time

Argonne, IL | Posted on October 20th, 2010

The revolutionary technique allows researchers to learn about the early stages of nanoparticle generation, long a mystery due to inadequate probing methods, and could lead to improved performance of the nanomaterials in applications including solar cells, sensing and more.

"Nanocrystal growth is the foundation of nanotechnology," said lead researcher Yugang Sun, an Argonne chemist. "Understanding it will allow scientists to more precisely tailor new and fascinating nanoparticle properties."

The way that nanoparticles look and behave depends on their architecture: size, shape, texture and surface chemistry. This, in turn, depends very much on the conditions under which they are grown.

"Accurately controlling nanoparticles is very difficult," Sun explained. "It's even harder to reproduce the same nanoparticles from batch to batch, because we still don't know all the conditions for the recipe. Temperature, pressure, humidity, impurities—they all affect growth, and we keep discovering more factors."

In order to understand how nanoparticles grow, the scientists needed to actually watch them in the act. The problem was that electron microscopy, the usual method for seeing down into the atomic level of nanoparticles, requires a vacuum. But many kinds of nanocrystals have to grow in a liquid medium—and the vacuum in an electron microscope makes this impossible. A special thin cell allows a tiny amount of liquid to be analyzed in an electron microscope, but it still limited the researchers to a liquid layer just 100 nanometers thick, which is significantly different from the real conditions for nanoparticle synthesis.

To solve this conundrum, Sun found he needed to use the very high-energy X-rays provided at Sector 1 of Argonne's Advanced Photon Source (APS), which adjoins the laboratory's Center for Nanoscale Materials, where he works. The pattern of X-rays scattered by the sample allowed the researchers to reconstruct the earliest stages of nanocrystals second-by-second.

"This technique yields a treasure trove of information, especially on the nucleation and growth steps of the crystals, that we had never been able to get before," said Sun.

The intensity of the X-rays does affect the growth of the nanocrystals, Sun said, but the effects only became significant after an especially long reaction time. "Getting a clear image of the growth process will allow us to control samples to get better results, and eventually, new nanomaterials that will have a wide range of applications," Sun explained.

The nanomaterials could be used in photovoltaic solar cells, chemical and biological sensors and even imaging. For example, noble metal nanoplates can absorb near-infrared light, so they can be used to enhance contrast in images. In one possible case, an injection of specially tailored nanoparticles near a cancer patient's tumor site could increase the imaging contrast between normal and cancerous cells so that doctors can accurately map the tumor.

"The key to this breakthrough was the unique ability for us to work with scientists from the Advanced Photon Source, the Center for Nanoscale Materials and the Electron Microscopy Center—all in one place," Sun said.

Funding for the research was provided by the U.S. Department of Energy's Office of Science. The article, "Nanophase Evolution at Semiconductor/Electrolyte Interface in Situ Probed by Time-Resolved High-Energy Synchrotron X-ray Diffraction", was published in NanoLetters.

####

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Possible Futures

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Materials/Metamaterials

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project