Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne scientists watch the birth of nanoparticles for the first time

These silver nanoplates are decorated with silver oxy salt nanoparticles along the edges. These nanostructures were grown under irradiation of high-energy x-rays, which allowed scientists to "watch" them grow in real time. The image is from a scanning electron microscope.
These silver nanoplates are decorated with silver oxy salt nanoparticles along the edges. These nanostructures were grown under irradiation of high-energy x-rays, which allowed scientists to "watch" them grow in real time. The image is from a scanning electron microscope.

Abstract:
A team of scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory and the Carnegie Institution of Washington has succeeded in "watching" nanoparticles grow in real time.

Argonne scientists watch the birth of nanoparticles for the first time

Argonne, IL | Posted on October 20th, 2010

The revolutionary technique allows researchers to learn about the early stages of nanoparticle generation, long a mystery due to inadequate probing methods, and could lead to improved performance of the nanomaterials in applications including solar cells, sensing and more.

"Nanocrystal growth is the foundation of nanotechnology," said lead researcher Yugang Sun, an Argonne chemist. "Understanding it will allow scientists to more precisely tailor new and fascinating nanoparticle properties."

The way that nanoparticles look and behave depends on their architecture: size, shape, texture and surface chemistry. This, in turn, depends very much on the conditions under which they are grown.

"Accurately controlling nanoparticles is very difficult," Sun explained. "It's even harder to reproduce the same nanoparticles from batch to batch, because we still don't know all the conditions for the recipe. Temperature, pressure, humidity, impurities—they all affect growth, and we keep discovering more factors."

In order to understand how nanoparticles grow, the scientists needed to actually watch them in the act. The problem was that electron microscopy, the usual method for seeing down into the atomic level of nanoparticles, requires a vacuum. But many kinds of nanocrystals have to grow in a liquid medium—and the vacuum in an electron microscope makes this impossible. A special thin cell allows a tiny amount of liquid to be analyzed in an electron microscope, but it still limited the researchers to a liquid layer just 100 nanometers thick, which is significantly different from the real conditions for nanoparticle synthesis.

To solve this conundrum, Sun found he needed to use the very high-energy X-rays provided at Sector 1 of Argonne's Advanced Photon Source (APS), which adjoins the laboratory's Center for Nanoscale Materials, where he works. The pattern of X-rays scattered by the sample allowed the researchers to reconstruct the earliest stages of nanocrystals second-by-second.

"This technique yields a treasure trove of information, especially on the nucleation and growth steps of the crystals, that we had never been able to get before," said Sun.

The intensity of the X-rays does affect the growth of the nanocrystals, Sun said, but the effects only became significant after an especially long reaction time. "Getting a clear image of the growth process will allow us to control samples to get better results, and eventually, new nanomaterials that will have a wide range of applications," Sun explained.

The nanomaterials could be used in photovoltaic solar cells, chemical and biological sensors and even imaging. For example, noble metal nanoplates can absorb near-infrared light, so they can be used to enhance contrast in images. In one possible case, an injection of specially tailored nanoparticles near a cancer patient's tumor site could increase the imaging contrast between normal and cancerous cells so that doctors can accurately map the tumor.

"The key to this breakthrough was the unique ability for us to work with scientists from the Advanced Photon Source, the Center for Nanoscale Materials and the Electron Microscopy Center—all in one place," Sun said.

Funding for the research was provided by the U.S. Department of Energy's Office of Science. The article, "Nanophase Evolution at Semiconductor/Electrolyte Interface in Situ Probed by Time-Resolved High-Energy Synchrotron X-ray Diffraction", was published in NanoLetters.

####

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Govt.-Legislation/Regulation/Funding/Policy

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanomedicine

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Materials/Metamaterials

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Aromatic food chemistry to the making of copper nanowires November 24th, 2014

Announcements

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Energy

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

Solar/Photovoltaic

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE