Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Yorkshire gets 4 million ($6.3 million) electron lithography facility

Abstract:
One of the highest resolution electron-beam lithography systems in Europe will soon be helping scientists in Yorkshire break new ground in nanotechnology.

Yorkshire gets 4 million ($6.3 million) electron lithography facility

UK | Posted on October 20th, 2010

The state-of-the art system is to be installed at the University of Leeds, thanks to a 2.7 million grant from the Engineering and Physical Sciences Research Council (EPSRC), in partnership with the Universities of Sheffield and York. Its purchase is supported by additional strategic investment from the University of Leeds and industrial funding for PhD studentships, bringing the total investment in the facility to close to 4 million.

The instrument - which will be unique in the region-is to be supplied by world-leading electron microscope manufacturer JEOL.

Electron-beam lithography systems are widely used by researchers to pattern wires, dots, rings and sophisticated integrated structures on a submicron length scale. The system that is coming to Leeds will able to define features that are less than 10 nanometres in size - more than 1000 times smaller than the width of a human hair.

This will allow researchers to fabricate new generations of high frequency electronics and spintronic devices and to study novel magnetic materials, with the potential for commercialization over the next five to 10 years. The system will also enable researchers to fabricate electrodes that are small enough to connect to individual molecules or groups of molecules, leading to new classes of hybrid, bioelectronic materials that could have applications in medical diagnostics.

"This instrument will take us to the next level of sophistication in terms of nanoengineering," said Professor Edmund Linfield, from the School of Electronic and Electrical Engineering, University of Leeds. "The system's sub-10 nm resolution will really help us bridge the gap to molecular scale patterning. In short, it will allow us to undertake the fundamental scientific work that will underpin the next generation of materials that will emerge over the coming decades, and allow us to design devices that will find industrial applications from the electronic to the medical sectors."

"This prestigious collaboration will undoubtedly enhance the reputation of all involved," said Steve Strange, Semiconductor Sales Manager for JEOL (UK). "For this project, the combination of exceptional academics in all three institutes, combined with the economic necessity of utilising our equipment 24/7 will showcase just how these collaborations are the future of high-end equipment procurement in the UK."

Many projects have already been lined up for the new electron-beam lithography system. For example, researchers will examine how nanowires made from magnetic films can be used to trap ultra-cold atoms - a technique that will help advance quantum computing applications.

They will also experiment with structures made from single-atom-thick sheets of carbon, a material known as graphene that has highly unusual electrical, mechanical and chemical properties and was the subject of this year's Nobel Prize for physics. Their aim is to use the graphene sheets to make super-fast electrometers that can respond within a trillionth of a second.

Funding from JEOL will help young scientists at the beginning of their research careers take advantage of the new facility. Up to ten new PhD studentships specifically linked to the electron-beam lithography will be created over the next five years at the Universities of Leeds, Sheffield and York. It is expected that up to half of these will involve collaborative research with an industrial partner.

"The Universities of Leeds, York and Sheffield have an exceptionally strong international record of research in nanotechnology, but we must continue to invest in the latest facilities and infrastructure if we, and the UK, are to remain major players in the field," said Professor Giles Davies, Pro-Dean for Research in the Faculty of Engineering, University of Leeds. "We must also make sure that up-and-coming young researchers are equipped with the skills they need to compete in an international scientific arena."

Professor Kevin O'Grady, Director of the York Institute for Materials Research at the University of York, said: "This project was specifically designed to train a large group of PhD students to improve the skill base in Yorkshire. The three students based in York will work on projects in collaboration with Seagate, Toshiba and Hitachi."

Dr Atsufumi Hirohata, of the Department of Electronics at York, added: "This instrument will allow me to make a multiple process spintronic device that will essentially be a full computer on a single chip."

Dr Daniel Allwood, from the Department of Materials Science and Engineering at the University of Sheffield, said: "The excitement about this new collaborative facility is due to the future science that it enables. The world-class patterning capabilities will lead to a new understanding of nanoscale materials and innovations across a wide range of application areas."

####

For more information, please click here

Contacts:
Paula Gould
University of Leeds press
Tel 0113 343 8059

Copyright © University of Leeds

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Spintronics

Making spintronic neurons sing in unison November 18th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

A new spin on superconductivity: Harvard physicists pass spin information through a superconductor October 16th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Nanoelectronics

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

What a twist: Silicon nanoantennas turn light around: The theoretical results will allow scientists to design nanodevices with extraordinary features for use in optoelectronics November 21st, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

UCR researchers discover new method to dissipate heat in electronic devices: By modulating the flow of phonons through semiconductor nanowires, engineers can create smaller and faster devices November 13th, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project