Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Yorkshire gets £4 million ($6.3 million) electron lithography facility

Abstract:
One of the highest resolution electron-beam lithography systems in Europe will soon be helping scientists in Yorkshire break new ground in nanotechnology.

Yorkshire gets £4 million ($6.3 million) electron lithography facility

UK | Posted on October 20th, 2010

The state-of-the art system is to be installed at the University of Leeds, thanks to a £2.7 million grant from the Engineering and Physical Sciences Research Council (EPSRC), in partnership with the Universities of Sheffield and York. Its purchase is supported by additional strategic investment from the University of Leeds and industrial funding for PhD studentships, bringing the total investment in the facility to close to £4 million.

The instrument - which will be unique in the region-is to be supplied by world-leading electron microscope manufacturer JEOL.

Electron-beam lithography systems are widely used by researchers to pattern wires, dots, rings and sophisticated integrated structures on a submicron length scale. The system that is coming to Leeds will able to define features that are less than 10 nanometres in size - more than 1000 times smaller than the width of a human hair.

This will allow researchers to fabricate new generations of high frequency electronics and spintronic devices and to study novel magnetic materials, with the potential for commercialization over the next five to 10 years. The system will also enable researchers to fabricate electrodes that are small enough to connect to individual molecules or groups of molecules, leading to new classes of hybrid, bioelectronic materials that could have applications in medical diagnostics.

"This instrument will take us to the next level of sophistication in terms of nanoengineering," said Professor Edmund Linfield, from the School of Electronic and Electrical Engineering, University of Leeds. "The system's sub-10 nm resolution will really help us bridge the gap to molecular scale patterning. In short, it will allow us to undertake the fundamental scientific work that will underpin the next generation of materials that will emerge over the coming decades, and allow us to design devices that will find industrial applications from the electronic to the medical sectors."

"This prestigious collaboration will undoubtedly enhance the reputation of all involved," said Steve Strange, Semiconductor Sales Manager for JEOL (UK). "For this project, the combination of exceptional academics in all three institutes, combined with the economic necessity of utilising our equipment 24/7 will showcase just how these collaborations are the future of high-end equipment procurement in the UK."

Many projects have already been lined up for the new electron-beam lithography system. For example, researchers will examine how nanowires made from magnetic films can be used to trap ultra-cold atoms - a technique that will help advance quantum computing applications.

They will also experiment with structures made from single-atom-thick sheets of carbon, a material known as graphene that has highly unusual electrical, mechanical and chemical properties and was the subject of this year's Nobel Prize for physics. Their aim is to use the graphene sheets to make super-fast electrometers that can respond within a trillionth of a second.

Funding from JEOL will help young scientists at the beginning of their research careers take advantage of the new facility. Up to ten new PhD studentships specifically linked to the electron-beam lithography will be created over the next five years at the Universities of Leeds, Sheffield and York. It is expected that up to half of these will involve collaborative research with an industrial partner.

"The Universities of Leeds, York and Sheffield have an exceptionally strong international record of research in nanotechnology, but we must continue to invest in the latest facilities and infrastructure if we, and the UK, are to remain major players in the field," said Professor Giles Davies, Pro-Dean for Research in the Faculty of Engineering, University of Leeds. "We must also make sure that up-and-coming young researchers are equipped with the skills they need to compete in an international scientific arena."

Professor Kevin O'Grady, Director of the York Institute for Materials Research at the University of York, said: "This project was specifically designed to train a large group of PhD students to improve the skill base in Yorkshire. The three students based in York will work on projects in collaboration with Seagate, Toshiba and Hitachi."

Dr Atsufumi Hirohata, of the Department of Electronics at York, added: "This instrument will allow me to make a multiple process spintronic device that will essentially be a full computer on a single chip."

Dr Daniel Allwood, from the Department of Materials Science and Engineering at the University of Sheffield, said: "The excitement about this new collaborative facility is due to the future science that it enables. The world-class patterning capabilities will lead to a new understanding of nanoscale materials and innovations across a wide range of application areas."

####

For more information, please click here

Contacts:
Paula Gould
University of Leeds press
Tel 0113 343 8059

Copyright © University of Leeds

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Spintronics

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic