Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Yorkshire gets £4 million ($6.3 million) electron lithography facility

Abstract:
One of the highest resolution electron-beam lithography systems in Europe will soon be helping scientists in Yorkshire break new ground in nanotechnology.

Yorkshire gets £4 million ($6.3 million) electron lithography facility

UK | Posted on October 20th, 2010

The state-of-the art system is to be installed at the University of Leeds, thanks to a £2.7 million grant from the Engineering and Physical Sciences Research Council (EPSRC), in partnership with the Universities of Sheffield and York. Its purchase is supported by additional strategic investment from the University of Leeds and industrial funding for PhD studentships, bringing the total investment in the facility to close to £4 million.

The instrument - which will be unique in the region-is to be supplied by world-leading electron microscope manufacturer JEOL.

Electron-beam lithography systems are widely used by researchers to pattern wires, dots, rings and sophisticated integrated structures on a submicron length scale. The system that is coming to Leeds will able to define features that are less than 10 nanometres in size - more than 1000 times smaller than the width of a human hair.

This will allow researchers to fabricate new generations of high frequency electronics and spintronic devices and to study novel magnetic materials, with the potential for commercialization over the next five to 10 years. The system will also enable researchers to fabricate electrodes that are small enough to connect to individual molecules or groups of molecules, leading to new classes of hybrid, bioelectronic materials that could have applications in medical diagnostics.

"This instrument will take us to the next level of sophistication in terms of nanoengineering," said Professor Edmund Linfield, from the School of Electronic and Electrical Engineering, University of Leeds. "The system's sub-10 nm resolution will really help us bridge the gap to molecular scale patterning. In short, it will allow us to undertake the fundamental scientific work that will underpin the next generation of materials that will emerge over the coming decades, and allow us to design devices that will find industrial applications from the electronic to the medical sectors."

"This prestigious collaboration will undoubtedly enhance the reputation of all involved," said Steve Strange, Semiconductor Sales Manager for JEOL (UK). "For this project, the combination of exceptional academics in all three institutes, combined with the economic necessity of utilising our equipment 24/7 will showcase just how these collaborations are the future of high-end equipment procurement in the UK."

Many projects have already been lined up for the new electron-beam lithography system. For example, researchers will examine how nanowires made from magnetic films can be used to trap ultra-cold atoms - a technique that will help advance quantum computing applications.

They will also experiment with structures made from single-atom-thick sheets of carbon, a material known as graphene that has highly unusual electrical, mechanical and chemical properties and was the subject of this year's Nobel Prize for physics. Their aim is to use the graphene sheets to make super-fast electrometers that can respond within a trillionth of a second.

Funding from JEOL will help young scientists at the beginning of their research careers take advantage of the new facility. Up to ten new PhD studentships specifically linked to the electron-beam lithography will be created over the next five years at the Universities of Leeds, Sheffield and York. It is expected that up to half of these will involve collaborative research with an industrial partner.

"The Universities of Leeds, York and Sheffield have an exceptionally strong international record of research in nanotechnology, but we must continue to invest in the latest facilities and infrastructure if we, and the UK, are to remain major players in the field," said Professor Giles Davies, Pro-Dean for Research in the Faculty of Engineering, University of Leeds. "We must also make sure that up-and-coming young researchers are equipped with the skills they need to compete in an international scientific arena."

Professor Kevin O'Grady, Director of the York Institute for Materials Research at the University of York, said: "This project was specifically designed to train a large group of PhD students to improve the skill base in Yorkshire. The three students based in York will work on projects in collaboration with Seagate, Toshiba and Hitachi."

Dr Atsufumi Hirohata, of the Department of Electronics at York, added: "This instrument will allow me to make a multiple process spintronic device that will essentially be a full computer on a single chip."

Dr Daniel Allwood, from the Department of Materials Science and Engineering at the University of Sheffield, said: "The excitement about this new collaborative facility is due to the future science that it enables. The world-class patterning capabilities will lead to a new understanding of nanoscale materials and innovations across a wide range of application areas."

####

For more information, please click here

Contacts:
Paula Gould
University of Leeds press
Tel 0113 343 8059

Copyright © University of Leeds

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Academic/Education

LuleŚ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Tools

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Nanometrics Board of Directors Names Pierre-Yves Lesaicherre President and CEO November 14th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project