Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Yorkshire gets £4 million ($6.3 million) electron lithography facility

Abstract:
One of the highest resolution electron-beam lithography systems in Europe will soon be helping scientists in Yorkshire break new ground in nanotechnology.

Yorkshire gets £4 million ($6.3 million) electron lithography facility

UK | Posted on October 20th, 2010

The state-of-the art system is to be installed at the University of Leeds, thanks to a £2.7 million grant from the Engineering and Physical Sciences Research Council (EPSRC), in partnership with the Universities of Sheffield and York. Its purchase is supported by additional strategic investment from the University of Leeds and industrial funding for PhD studentships, bringing the total investment in the facility to close to £4 million.

The instrument - which will be unique in the region-is to be supplied by world-leading electron microscope manufacturer JEOL.

Electron-beam lithography systems are widely used by researchers to pattern wires, dots, rings and sophisticated integrated structures on a submicron length scale. The system that is coming to Leeds will able to define features that are less than 10 nanometres in size - more than 1000 times smaller than the width of a human hair.

This will allow researchers to fabricate new generations of high frequency electronics and spintronic devices and to study novel magnetic materials, with the potential for commercialization over the next five to 10 years. The system will also enable researchers to fabricate electrodes that are small enough to connect to individual molecules or groups of molecules, leading to new classes of hybrid, bioelectronic materials that could have applications in medical diagnostics.

"This instrument will take us to the next level of sophistication in terms of nanoengineering," said Professor Edmund Linfield, from the School of Electronic and Electrical Engineering, University of Leeds. "The system's sub-10 nm resolution will really help us bridge the gap to molecular scale patterning. In short, it will allow us to undertake the fundamental scientific work that will underpin the next generation of materials that will emerge over the coming decades, and allow us to design devices that will find industrial applications from the electronic to the medical sectors."

"This prestigious collaboration will undoubtedly enhance the reputation of all involved," said Steve Strange, Semiconductor Sales Manager for JEOL (UK). "For this project, the combination of exceptional academics in all three institutes, combined with the economic necessity of utilising our equipment 24/7 will showcase just how these collaborations are the future of high-end equipment procurement in the UK."

Many projects have already been lined up for the new electron-beam lithography system. For example, researchers will examine how nanowires made from magnetic films can be used to trap ultra-cold atoms - a technique that will help advance quantum computing applications.

They will also experiment with structures made from single-atom-thick sheets of carbon, a material known as graphene that has highly unusual electrical, mechanical and chemical properties and was the subject of this year's Nobel Prize for physics. Their aim is to use the graphene sheets to make super-fast electrometers that can respond within a trillionth of a second.

Funding from JEOL will help young scientists at the beginning of their research careers take advantage of the new facility. Up to ten new PhD studentships specifically linked to the electron-beam lithography will be created over the next five years at the Universities of Leeds, Sheffield and York. It is expected that up to half of these will involve collaborative research with an industrial partner.

"The Universities of Leeds, York and Sheffield have an exceptionally strong international record of research in nanotechnology, but we must continue to invest in the latest facilities and infrastructure if we, and the UK, are to remain major players in the field," said Professor Giles Davies, Pro-Dean for Research in the Faculty of Engineering, University of Leeds. "We must also make sure that up-and-coming young researchers are equipped with the skills they need to compete in an international scientific arena."

Professor Kevin O'Grady, Director of the York Institute for Materials Research at the University of York, said: "This project was specifically designed to train a large group of PhD students to improve the skill base in Yorkshire. The three students based in York will work on projects in collaboration with Seagate, Toshiba and Hitachi."

Dr Atsufumi Hirohata, of the Department of Electronics at York, added: "This instrument will allow me to make a multiple process spintronic device that will essentially be a full computer on a single chip."

Dr Daniel Allwood, from the Department of Materials Science and Engineering at the University of Sheffield, said: "The excitement about this new collaborative facility is due to the future science that it enables. The world-class patterning capabilities will lead to a new understanding of nanoscale materials and innovations across a wide range of application areas."

####

For more information, please click here

Contacts:
Paula Gould
University of Leeds press
Tel 0113 343 8059

Copyright © University of Leeds

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Spintronics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Tools

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE