Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Exploring Sustainability for Energy and Buildings

To improve energy management and water conservation, researchers at the University of California-Berkeley will create a system that cleans greywater while modulating the day and night temperature shifts in buildings. These walls will be specially designed with panels of biologically-inspired microlens arrays to collect solar energy (detail view of solar optic activated panel, above). While it's inside the walls, the water will be disinfected for reuse, and it also will serve as thermal storage and conduction control for the building.  Credit: Prof. Gutierrez/Prof. Hermanovicz/Prof. Lee, University of California-Berkeley
To improve energy management and water conservation, researchers at the University of California-Berkeley will create a system that cleans greywater while modulating the day and night temperature shifts in buildings. These walls will be specially designed with panels of biologically-inspired microlens arrays to collect solar energy (detail view of solar optic activated panel, above). While it's inside the walls, the water will be disinfected for reuse, and it also will serve as thermal storage and conduction control for the building. Credit: Prof. Gutierrez/Prof. Hermanovicz/Prof. Lee, University of California-Berkeley

Abstract:
Engineering awards aim to advance energy storage and invigorate green building design

Exploring Sustainability for Energy and Buildings

Arlington, VA | Posted on October 20th, 2010

The National Science Foundation (NSF) Office of Emerging Frontiers in Research and Innovation (EFRI) has announced 14 grants for fiscal year (FY) 2010, awarding nearly $28 million to 62 investigators at 24 institutions.

Over the next four years, teams of researchers will pursue transformative, fundamental research in two areas of great national need: storing energy from renewable sources; and engineering sustainable buildings.

Energy generated from renewable sources has long promised to satisfy demands for more and cleaner electricity. Because renewable sources, such as sunlight and wind, can produce greatly fluctuating amounts of energy, they are most effectual when excess energy can be stored until it's needed.

EFRI research teams will pursue creative new approaches to making large-scale energy storage efficient and economical. They aim to construct capacitors and regenerative fuel cells with unprecedented capabilities to harness the sun's thermal energy, to produce chemical fuel on demand, and to trap off-shore wind as compressed air.

"These four projects take radically different approaches to storing excess energy from intermittent sources," said Geoffrey Prentice, lead EFRI program officer, "and success in any one of them could guide the development of new processes for large-scale energy storage."

A second set of EFRI research teams will investigate the critical flows and fluxes of buildings--power, heat, light, water, air and occupants--to create new paradigms for the design, construction, and operation of our homes and workplaces.

These researchers aim to improve the ability to predict and control building energy performance and environmental impacts, and to design systems that respond intelligently, in real-time, to changing conditions and to occupant input and needs. The investigations will pursue methods for reducing water consumption; for distributed, integrated approaches to renewable energy production, storage, and use; and for moderating temperature shifts through passive building technologies and systems.

"These awards are significant in the extent to which the research teams are multidisciplinary," said lead EFRI program officer Richard Fragaszy. Engineers, architects, and physical and social scientists are pooling their expertise to conduct the basic research needed to design and construct future homes and offices that will greatly reduce reliance on fossil fuels and demand for potable water, while improving the health and productivity of their occupants."

"These researchers are undertaking bold investigations in order to achieve major leaps in knowledge," said Sohi Rastegar, director of EFRI. "If they are successful, their findings have the potential to significantly impact global warming and promote U.S. energy independence."

The FY 2010 EFRI topics were developed in close collaboration with the NSF Directorates for Computer and Information Science and Engineering (CISE), Mathematical and Physical Sciences (MPS), and Social, Behavioral, and Economic Sciences (SBE), as well as with the U.S. Department of Energy (DOE) and U.S. Environment Protection Agency (EPA). DOE and EPA also contributed financial support to the EFRI SEED projects.

EFRI, established by the NSF Directorate for Engineering in 2007, seeks high-risk interdisciplinary research that has the potential to transform engineering and other fields. The grants demonstrate the EFRI goal to inspire and enable researchers to expand the limits of our knowledge.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot, NSF
(703) 292-7730


Program Contacts
Sohi Rastegar, NSF
(703) 292-8305

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Videos/Movies

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Possible Futures

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Environment

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Energy

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Water

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Home

Research gives new ray of hope for solar fuel April 27th, 2018

This Wired Wallpaper Could Turn Your Whole House Into A Fire Alarm April 2nd, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

BNAs improve performance of Li-ion batteries June 27th, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Construction

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project