Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Building teeth

Abstract:
Dental researchers use Malvern Zetasizer Nano to characterize tooth enamel made in the laboratory

Building teeth

Malvern, UK | Posted on October 20th, 2010

Dr Vuk Uskokovic, from the Department of Preventive and Restorative Dental Sciences, School of Dentistry at the University of California, San Francisco (UCSF), is involved in a study that aims to mimic the growth of tooth enamel in the laboratory. A key analytical tool in this NIH-funded project is the Zetasizer Nano particle characterization system from Malvern Instruments.

Harnessing the combined dynamic light scattering (DLS) and zeta-potential measurement capabilities of the instrument, Dr Uskokovic and his colleagues have been able to characterize the interaction between amelogenin protein, which makes up 90% of the enamel matrix, and the mineral component, hydroxyapatite. Self assembly of this particular protein is thought to be responsible for guiding the formation of enamel crystals.

While dental techniques are often highly sophisticated, those available for restoring damaged dental tissue are less than perfect. Consequently there is a requirement for approaches that minimise tissue loss. According to Dr Uskokovic, if we understand how enamel forms naturally we can use the same compounds to rebuild the damaged enamel.

In a paper entitled, ‘Zeta-potential and Particle Size Analysis of Human Amelogenins', (Uskokovic et al., J Dent Res 89(2):149-153, 2010) Dr Uskokovic and his colleagues deliver results that suggest that: "zeta-potential may be used as a control parameter in replicating the assembly of amelogenins in vitro." The authors also note that: "…the meaning of the correlations established [in the paper] between zeta-potential and particle-particle attraction could be potentially applied to self-assembling proteins in general."

When asked why he selected Malvern's Zetasizer Nano for his work, Dr Uskokovic said: "I had previous experience with the Zetasizer Nano, albeit with more robust inorganic substances, so when asked to purchase a protein particle characterization system I knew it might be a good candidate. In a side by side trial with a competitive product, there was no contest. Results from the Zetasizer Nano were both more reliable and more robust."

Dr Uskokovic continued: "Proteins are sensitive to electric fields and during zeta potential measurements proteins are known to accidentally ‘cook' if you're not careful. To achieve usable results, it was therefore necessary to fine tune our procedures to overcome these challenges and it was a huge advantage to have the experts at Malvern Instruments so readily available to answer questions and deliver detailed guidance. As a result, I am now able to pass on this tutelage to students volunteering in our lab."

Having completed the initial study covering the characterization of amelogenin protein, including its proteolytic cleavage products, as published in the Journal of Dental Research, Dr Uskokovic is currently awaiting publication of a more comprehensive paper focusing on the interaction between amelogenin and its mineral counterpart in enamel.

Malvern Instruments Zetasizer Nano delivers high quality DLS and zeta potential measurements in a single instrument. The combination of these techniques, and the reliability of results, makes the instrument ideal for protein characterization. For further information, please visit: www.malverninstruments.com/zetasizer

Malvern, Malvern Instruments and Zetasizer are registered trademarks of Malvern Instruments Ltd

####

About Malvern Instruments
Malvern Instruments is a market leader in measuring performance controlling material properties. These include particle size, particle shape, zeta potential, molecular weight, size and conformation, rheological properties and chemical distribution. Malvern delivers the systems, support and expertise that ensure the analytical integrity and productivity needed to drive research, development and manufacturing.

Malvern’s measurement solutions for scientists, technologists and engineers advance continually through customer collaboration. Complementary materials characterization systems deliver inter-related measurements that reflect the complexities of particulates and disperse systems, nanomaterials and macromolecules. Combining intelligently implemented technologies with in-depth industry applications knowledge and support, Malvern provides customers with the competitive advantage they demand.

Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Korea and Japan, a joint venture in India, a global distributor network and applications laboratories around the world. www.malvern.com

For more information, please click here

Contacts:
For press information, please contact:

Trish Appleton
Kapler Communications
Knowledge Centre
Wyboston Lakes
Great North Road
Wyboston
Bedfordshire
MK44 3BY
UK
Tel: +44 (0)1480 479280
Fax: +44 (0)1480 470343

USA contact:

Marisa Fraser
Malvern Instruments Inc.
117 Flanders Road
Westborough
MA 01581-1042
USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403


Please send sales enquiries to:

Alison Vines
Malvern Instruments Ltd
Enigma Business Park
Grovewood Road
Malvern
Worcestershire
WR14 1XZ
UK
Tel: +44 (0) 1684 892456
Fax: +44 (0) 1684 892789

Copyright © Malvern Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Announcements

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Tools

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Dental

Nano-shells deliver molecules that tell bone to repair itself January 16th, 2016

The artificial materials that came in from the cold: Berkeley Lab researchers develop nature-mimicking freeze-casting technique for fabricating advanced porous materials December 14th, 2015

Graphene oxide could make stronger dental fillings: Study reveals new filling material material that is not toxic to teeth December 4th, 2015

Details from the inner life of a tooth: New X-ray method uses scattering to visualize nanostructures November 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic