Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NRL Scientists Unravel Complex Quantum Dot-Dopamine Interactions

Intracellular pH sensing. Fluorescent micrographs collected from COS-1 cells co-injected with 550 nm emitting QD-dopamine conjugates and red FLX internal standard nanospheres in buffer at pH 6.5. The growth media was switched to pH 11.5 supplemented with the drug Nystatin and micrographs were captured at the indicated time intervals from both the QD and FLX emission channels. Merged images are shown in the bottom row and pH values extracted at each time interval are shown below.
Intracellular pH sensing. Fluorescent micrographs collected from COS-1 cells co-injected with 550 nm emitting QD-dopamine conjugates and red FLX internal standard nanospheres in buffer at pH 6.5. The growth media was switched to pH 11.5 supplemented with the drug Nystatin and micrographs were captured at the indicated time intervals from both the QD and FLX emission channels. Merged images are shown in the bottom row and pH values extracted at each time interval are shown below.

Abstract:
Scientists at the Naval Research Laboratory in conjunction with the Scripps Research Institute in La Jolla, Ca., recently reported a detailed study of the interactions of water soluble semi-conductor quantum dots (QDs) with the electro-active neuro-transmitter dopamine. These biocompatible QD-dopamine nano-assemblies may be used as the active component for sensors that are used to detect a wide variety of target analytes ranging from sugars to peroxides.

NRL Scientists Unravel Complex Quantum Dot-Dopamine Interactions

Washington, DC | Posted on October 18th, 2010

According to NRL's Dr. Michael Stewart, a member of the research team "The nature of the QD-dopamine interaction has been the subject of more than 25 recent research papers that attempted to uncover and exploit the exact nature of how the QDs interact with these small electro-active chemicals during the sensing process. Until now, it remained unclear as to whether dopamine acted as an electron acceptor or as an electron donor to quench luminescence from the QD."

"The chemical state of dopamine changes from a protonated hydroquinone in acidic media to an oxidized quinone in basic environments. A series of carefully designed experiments allowed the research team to establish that only the quinone form is capable of acting as an electron acceptor resulting in quenching of the QD emission. The rate of quinone formation and hence QD quenching is directly proportional to pH and can therefore be used to detect changes in the pH of solutions. Using this nano-scale sensor, the research team was able to demonstrate pH sensing in solution and even visualize changes inside cells as cell cultures underwent drug-induced alkalosis," explained Dr. Scott Trammell.

The interdisciplinary group of scientists involved in this project from NRL include: Dr. Michael Stewart and Dr. Kimihiro Susumu of NRL's Optical Sciences Division, and Dr. Igor Medintz, Dr. Scott Trammell, and Dr. James Delehanty from NRL's Center for Bio/Molecular Science and Engineering, along with Professor Phillip Dawson and Dr. Juan B. Blanco-Canosa of the Scripps Research Institute.

This research was supported by NRL's Nanoscience Institute and the Defense Threat Reduction Agency (DTRA), and is focused on areas tasked to the Department of Defense under the President's National Nanotechnology Initiative. The research was published in the August 2010 issue of Nature Materials.

####

For more information, please click here

Contacts:
Dom Panciarelli
(202) 767-2541

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Sensors

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Military

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Quantum Dots/Rods

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

A new type of quantum bits July 29th, 2016

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Nanobiotechnology

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic