Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Lastest Graphene Research Could Lead to Improvements in Bluetooth Headsets and Other Wireless Devices

Alexander Balandin, right, and Guanxiong Liu, one of Balandin’s graduate students
Alexander Balandin, right, and Guanxiong Liu, one of Balandin’s graduate students

Abstract:
Researchers at UC Riverside continue advancements with graphene, the single-atom thick carbon crytal that was the subject of this year's Nobel Prize in physics

Lastest Graphene Research Could Lead to Improvements in Bluetooth Headsets and Other Wireless Devices

Riverside, CA | Posted on October 18th, 2010

Researchers at the UC Riverside Bourns College of Engineering have built and successfully tested an amplifier made from graphene that could lead to more efficient circuits in electronic chips, such as those used in Bluetooth headsets and toll collection devices in cars.

Graphene, a single-atom thick carbon crystal, was first isolated in 2004 by Andre Geim and Konstantin Novoselov, who won the Nobel Prize in physics this month for that work. Graphene has many extraordinary properties, including superior electrical and heat conductivity, mechanical strength and unique optical absorption.

The demonstration at UCR of the graphene amplifier with signal processing functions is a major step forward in graphene technology because it is a transition from individual graphene devices to graphene circuits and chips, said Alexander Balandin, a professor of electrical engineering, who performed the work along with a graduate student and researchers at Rice University.

The triple-mode amplifier based on graphene has advantages over amplifiers built from conventional semiconductors, such as silicon, said Balandin, who is also chair of the UC Riverside Materials Science and Engineering program. The graphene amplifier reveals greater functionality and a faster speed because of graphene's electrical ambipolarity (current conduction by negative and positive charges).

It can be switched between different modes of operation by a simple change of applied voltage. These characteristics are expected to result in simpler and smaller chips, a faster system response and less power consumption.

The experimental demonstration of the graphene amplifier functionality was reported last week in the journal ACS Nano.

The fabrication and experimental testing were performed in Balandin's Nano-Device Laboratory. The co-authors of the paper are Guanxiong Liu, one of Balandin's graduate students, Kartik Mohanram, an assistant professor at Rice University, and Xuebei Yan, one of Mohanram's graduate students.

The researchers from Rice University designed the amplifier and testing protocol. Liu built the device in the UCR clean room. Liu and Yan then tested the amplifier in Balandin's lab.

The triple-mode amplifier can be charged at anytime during operation in the three modes: positive, negative or both. By combining these three modes, the researchers demonstrated the amplifier can achieve the modulation necessary for phase shift keying and frequency shift keying, which are widely used in wireless and audio applications.

These applications include: Bluetooth headsets for cell phones; radio frequency identification (RFID), which is used in wireless products, including toll collection devices in cars, cards used to pay for public transportation and identification tags on animals; and ZigBee, a communication protocol used in devices such as such as wireless light switches with lamps and electrical meters with in-home-display.

####

About UC Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of over 19,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Copyright © UC Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE