Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rice, TMC team take aim at pancreatic cancer

Abstract:
National Cancer Institute funds preclinical 'theranostic' study

Rice, TMC team take aim at pancreatic cancer

Houston, TX | Posted on October 18th, 2010

Researchers from Rice University's Laboratory for Nanophotonics (LANP), the radiology department at Baylor College of Medicine (BCM) and the University of Texas MD Anderson Cancer Center are preparing to test a combined approach for diagnosing and treating pancreatic cancer with a specially engineered nanoparticle.

The five-year, preclinical testing program will be funded by a newly announced $1.8 million grant from the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer program.

"Pancreatic cancer is notoriously difficult to treat, and we hope nanoparticle-based 'theranostics' can change that," said LANP Director Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "Our nanoparticles are designed to specifically target cancer cells and to function as both diagnostic and therapeutic agents."

Pancreatic cancer is one of the most deadly forms of cancer. Surgery is often the only treatment option, and the five-year, postsurgical survival rate is less than 25 percent.

Halas is the inventor of gold nanoshells, tiny gold-sheathed particles that can harvest light and convert it to heat. She also helped pioneer the use of nanoshells for cancer treatment, and she is the principal investigator on the new NCI grant. The theranostic project team includes co-principal investigators Amit Joshi, assistant professor of radiology at BCM; Sunil Krishnan, associate professor in radiation oncology at MD Anderson; and Peter Nordlander, professor of physics and astronomy at Rice.

Theranostics involve technologies and agents that can diagnose and treat diseases in a single procedure. The theranostic particle that will be tested at Rice, BCM and MD Anderson was invented at LANP.

"A seamless integration of multiple imaging and therapeutic technologies within a single nanoparticle is required to tackle diseases like pancreatic cancer, which often resist conventional therapies," Joshi said.

At the heart of the particle is a nanoshell that can be used to kill cancer cells with heat. The particle can also be tagged with antibodies that allow it to home in on specific types of cancer cells. In addition, the nanoparticle is designed to provide high-resolution images regarding its location in the body and in the tumor. This is accomplished by combining an FDA-cleared dye for fluorescence imaging with an active marker for MRI imaging. These combined capabilities allow researchers to track the nanoparticles throughout the body and even observe their distribution within the tumor before, during and after treatment.

"This level of highly detailed information on nanoparticle location in the body has not been obtainable previously," Halas said.

In the first published tests of the new particle last year, Joshi, Halas and colleagues showed it could be used to simultaneously detect and destroy breast and ovarian cancer cells in cell cultures.

In the NCI study, researchers will test whether the particles can be used to image and treat pancreatic cancer in mice. The tests will investigate how well the particles work as imaging agents -- both in MRI scans and in fluorescent optical scans, how well they target specific cell types, where they go inside the body after testing and treatment and how well they perform as therapeutic agents. In addition, Krishnan's lab at MD Anderson has a particular interest in testing the particles to see if they can be used to boost the effectiveness of radiation therapy.

"Nanoparticle-based theranostics holds great promise, not only for treating pancreatic cancer, but for treating other forms of cancer as well," Halas said. "But successfully translating new technology like this from the lab to the clinic requires excellent research partnerships, like those we have at Baylor College of Medicine and MD Anderson."

The Laboratory for Nanophotonics at Rice was formed in 2004 with the mission to invent, understand, develop, simulate, control, optimize and apply nanoscale optical elements, components and systems. LANP features a strong interdisciplinary research program in three primary areas: metal-based plasmonics, nanoparticle-enhanced sensing and spectroscopy, and nanophotonic applications in biomedicine.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Nanomedicine

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Announcements

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Nanobiotechnology

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project