Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rice, TMC team take aim at pancreatic cancer

Abstract:
National Cancer Institute funds preclinical 'theranostic' study

Rice, TMC team take aim at pancreatic cancer

Houston, TX | Posted on October 18th, 2010

Researchers from Rice University's Laboratory for Nanophotonics (LANP), the radiology department at Baylor College of Medicine (BCM) and the University of Texas MD Anderson Cancer Center are preparing to test a combined approach for diagnosing and treating pancreatic cancer with a specially engineered nanoparticle.

The five-year, preclinical testing program will be funded by a newly announced $1.8 million grant from the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer program.

"Pancreatic cancer is notoriously difficult to treat, and we hope nanoparticle-based 'theranostics' can change that," said LANP Director Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "Our nanoparticles are designed to specifically target cancer cells and to function as both diagnostic and therapeutic agents."

Pancreatic cancer is one of the most deadly forms of cancer. Surgery is often the only treatment option, and the five-year, postsurgical survival rate is less than 25 percent.

Halas is the inventor of gold nanoshells, tiny gold-sheathed particles that can harvest light and convert it to heat. She also helped pioneer the use of nanoshells for cancer treatment, and she is the principal investigator on the new NCI grant. The theranostic project team includes co-principal investigators Amit Joshi, assistant professor of radiology at BCM; Sunil Krishnan, associate professor in radiation oncology at MD Anderson; and Peter Nordlander, professor of physics and astronomy at Rice.

Theranostics involve technologies and agents that can diagnose and treat diseases in a single procedure. The theranostic particle that will be tested at Rice, BCM and MD Anderson was invented at LANP.

"A seamless integration of multiple imaging and therapeutic technologies within a single nanoparticle is required to tackle diseases like pancreatic cancer, which often resist conventional therapies," Joshi said.

At the heart of the particle is a nanoshell that can be used to kill cancer cells with heat. The particle can also be tagged with antibodies that allow it to home in on specific types of cancer cells. In addition, the nanoparticle is designed to provide high-resolution images regarding its location in the body and in the tumor. This is accomplished by combining an FDA-cleared dye for fluorescence imaging with an active marker for MRI imaging. These combined capabilities allow researchers to track the nanoparticles throughout the body and even observe their distribution within the tumor before, during and after treatment.

"This level of highly detailed information on nanoparticle location in the body has not been obtainable previously," Halas said.

In the first published tests of the new particle last year, Joshi, Halas and colleagues showed it could be used to simultaneously detect and destroy breast and ovarian cancer cells in cell cultures.

In the NCI study, researchers will test whether the particles can be used to image and treat pancreatic cancer in mice. The tests will investigate how well the particles work as imaging agents -- both in MRI scans and in fluorescent optical scans, how well they target specific cell types, where they go inside the body after testing and treatment and how well they perform as therapeutic agents. In addition, Krishnan's lab at MD Anderson has a particular interest in testing the particles to see if they can be used to boost the effectiveness of radiation therapy.

"Nanoparticle-based theranostics holds great promise, not only for treating pancreatic cancer, but for treating other forms of cancer as well," Halas said. "But successfully translating new technology like this from the lab to the clinic requires excellent research partnerships, like those we have at Baylor College of Medicine and MD Anderson."

The Laboratory for Nanophotonics at Rice was formed in 2004 with the mission to invent, understand, develop, simulate, control, optimize and apply nanoscale optical elements, components and systems. LANP features a strong interdisciplinary research program in three primary areas: metal-based plasmonics, nanoparticle-enhanced sensing and spectroscopy, and nanophotonic applications in biomedicine.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Research partnerships

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project