Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rice, TMC team take aim at pancreatic cancer

Abstract:
National Cancer Institute funds preclinical 'theranostic' study

Rice, TMC team take aim at pancreatic cancer

Houston, TX | Posted on October 18th, 2010

Researchers from Rice University's Laboratory for Nanophotonics (LANP), the radiology department at Baylor College of Medicine (BCM) and the University of Texas MD Anderson Cancer Center are preparing to test a combined approach for diagnosing and treating pancreatic cancer with a specially engineered nanoparticle.

The five-year, preclinical testing program will be funded by a newly announced $1.8 million grant from the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer program.

"Pancreatic cancer is notoriously difficult to treat, and we hope nanoparticle-based 'theranostics' can change that," said LANP Director Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "Our nanoparticles are designed to specifically target cancer cells and to function as both diagnostic and therapeutic agents."

Pancreatic cancer is one of the most deadly forms of cancer. Surgery is often the only treatment option, and the five-year, postsurgical survival rate is less than 25 percent.

Halas is the inventor of gold nanoshells, tiny gold-sheathed particles that can harvest light and convert it to heat. She also helped pioneer the use of nanoshells for cancer treatment, and she is the principal investigator on the new NCI grant. The theranostic project team includes co-principal investigators Amit Joshi, assistant professor of radiology at BCM; Sunil Krishnan, associate professor in radiation oncology at MD Anderson; and Peter Nordlander, professor of physics and astronomy at Rice.

Theranostics involve technologies and agents that can diagnose and treat diseases in a single procedure. The theranostic particle that will be tested at Rice, BCM and MD Anderson was invented at LANP.

"A seamless integration of multiple imaging and therapeutic technologies within a single nanoparticle is required to tackle diseases like pancreatic cancer, which often resist conventional therapies," Joshi said.

At the heart of the particle is a nanoshell that can be used to kill cancer cells with heat. The particle can also be tagged with antibodies that allow it to home in on specific types of cancer cells. In addition, the nanoparticle is designed to provide high-resolution images regarding its location in the body and in the tumor. This is accomplished by combining an FDA-cleared dye for fluorescence imaging with an active marker for MRI imaging. These combined capabilities allow researchers to track the nanoparticles throughout the body and even observe their distribution within the tumor before, during and after treatment.

"This level of highly detailed information on nanoparticle location in the body has not been obtainable previously," Halas said.

In the first published tests of the new particle last year, Joshi, Halas and colleagues showed it could be used to simultaneously detect and destroy breast and ovarian cancer cells in cell cultures.

In the NCI study, researchers will test whether the particles can be used to image and treat pancreatic cancer in mice. The tests will investigate how well the particles work as imaging agents -- both in MRI scans and in fluorescent optical scans, how well they target specific cell types, where they go inside the body after testing and treatment and how well they perform as therapeutic agents. In addition, Krishnan's lab at MD Anderson has a particular interest in testing the particles to see if they can be used to boost the effectiveness of radiation therapy.

"Nanoparticle-based theranostics holds great promise, not only for treating pancreatic cancer, but for treating other forms of cancer as well," Halas said. "But successfully translating new technology like this from the lab to the clinic requires excellent research partnerships, like those we have at Baylor College of Medicine and MD Anderson."

The Laboratory for Nanophotonics at Rice was formed in 2004 with the mission to invent, understand, develop, simulate, control, optimize and apply nanoscale optical elements, components and systems. LANP features a strong interdisciplinary research program in three primary areas: metal-based plasmonics, nanoparticle-enhanced sensing and spectroscopy, and nanophotonic applications in biomedicine.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

Nanobiotechnology

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project